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Supplemental Methods 

Social Network Nominations 

Factor analysis. For each social support question, we computed indegree by summing 

the number of ties directed to each person from the dorm [1] (Fig. S1).  

 
Figure S1. Histograms of indegree for each of the 8 social network questions, collapsed across 
both dorms.  

 

As a data reduction step, we then performed a factor analysis on indegree for each of the 

eight questions, using the full sample (i.e., 97 participants) to increase reliability. Using the 



“psych” package in R, a parallel analysis (i.e., a factor retention method) recommended one 

factor in the exploratory analysis [2] (Fig. S2).  As a result, we specified a one-factor model with 

unweighted least squares extraction (i.e., “minres”) with no rotation. We evaluated model fit 

with the Tucker–Lewis Index (TLI), root mean square error of approximation (RMSEA), and 

standardized root mean square residual (SRSR). Generally TLI values above .90, as well as 

RMSEA and SRSR values of .08 or less indicate adequate fit [3].  The one-factor solution 

yielded acceptable fit across indices: TLI = .86, RMSEA = .21, SRSR = .05.  In addition, factor 

loadings for this model indicated relatively high internal consistency (see Table S1), ranging 

from .72 to .91. Overall, these analyses revealed that indegree across nominations emerges as 

one composite factor.  

 
Figure S2. Parallel analysis scree plots of indegree for each of the eight nomination questions 
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Table S1. Factor loadings for indegree of each of the eight social network nominations 
 

  Full Sample 
Indegree (n = 97) 

1. Who are your closest friends? .91 
2. Whom do you spend the most time with?  .91 
3. Whom have you asked for advice about your social life? .83 
4. Who do you turn to when something bad happens? .84 
5. Whom do you share good news with?  .94 
6. Who makes you feel supported and cared for?  .89 
7. Who is the most empathetic? 
8. Who usually makes you feel positive (e.g., happy, enthusiastic)?   

.72 

.81 
 

Social Network Graphs 

 Our process for generating social network graphs in Fig. 1 was as follows: (1) we 

generated an adjacency matrix from all the nominations in each dorm for each of the eight 

questions, (2) we multiplied each matrix by its respective factor loading (Table S1), (3) we 

averaged these weighted matrices together, (4) we converted this new matrix into a list of edges 

that represented the strength and direction of a tie between individuals in the network. 

We then created a Gephi graph from this list of edges with a “force-based” algorithm (i.e., Force 

Atlas 2; https://github.com/gephi/gephi/wiki/Force-Atlas-2). This algorithm attracts linked nodes 

to each other and pushes non-linked nodes apart. Therefore, nodes that are closer together 

represent denser interconnections. Each node represents an individual in the dorm, and larger 

nodes indicate higher numbers of nominations received from the dorm. Arrows represent the 

strength and direction of connections between individuals. More specifically, the color and 

thickness of the arrow represents the weighted average of the connections between the source 

and the target. 

 



Pre-Scan Ratings of Dorm Relationships 

 In an online survey, participants saw a photo of each dorm member and were asked if 

they had talked or interacted with him/her. Using a 7-point likert scale, they were then asked to 

rate each dorm member on various dimensions (in randomized order): (1) how close are you to 

this person? (2) how much do you like this person? (3) how empathetic is this person? (4) 

how happy does this person seem in general? (5) how much time do you usually spend with this 

person each week? (6) how attractive is this person? (7) how much do you think this person likes 

you? 

Face Selection Algorithm 

To select which 30 faces were displayed in the face-viewing task, we first removed dorm 

members with whom the participant had not interacted (see above). When the resulting list 

included less than 30 dorm members (only occurred for 3 participants), we randomly included 

dorm members that the perceiver had not interacted with. When the resulting list included over 

30 dorm members, we created a distribution using the relationship index (i.e., a sum of questions 

1-4 for pre-scan ratings, see Methods in main manuscript) and then randomly removed one 

participant from the modal bin until we reached a total of 30 dorm members.  This approach 

ensured that we included a wide distribution of dorm members with varied levels of closeness 

with the perceiver.  

Image Acquisition 

Whole-brain fMRI data were acquired on a 3.0 Tesla GE magnetic resonance imaging 

scanner with a 32-channel head coil at the Stanford Center for Cognitive and Neurobiological 

Imaging. For all tasks, we used MATLAB with the Psychophysics Toolbox extensions [4] to 

present the tasks to participants and record their responses. Participants viewed the fMRI tasks 

via a mirror system and made their responses via an fMRI compatible button response box. For 



the face-viewing task, we collected 149 functional T2* weighted gradient echo pulse sequence 

image volumes in one functional run (slice thickness = 2.9 mm, no gap, 46 slices, TR = 2000 ms, 

TE = 25 ms, flip angle = 77°, interleaved acquisition). For the functional reward localizer, we 

collected 160 functional T2* weighted gradient echo pulse sequence image volumes in one 

functional run. High-resolution structural images were also acquired with a T1-weighted pulse 

sequence (slice thickness = 0.9 mm, flip angle = 12°, interleaved acquisition). 

Image Preprocessing 

For each participant’s EPI time series, the first four volumes were discarded to account 

for T1-equilibration effects. Manual quality checking of all participants' scans was conducted 

through FSL view for potential dropout, distortion, radio frequency noise, spiking, motion, and 

other common artifacts. Through SPM8 (Wellcome Department of Imaging Neuroscience, 

London), we reoriented, realigned, co-registered to the structural scan, spatially normalized to a 

standard MNI (Montreal Neurological Institute) template using segmentation parameters, and 

smoothed (6 mm full width at half maximum Gaussian kernel) all functional images.  

 

Face-Viewing Task 

Figure S3. A schematic of the rapid event-related design for the face-viewing task. Participants 
viewed (1) photos of their dorm members, (2) a crosshair during the interstimulus interval, and 
(3) a red dot during the attention check (~16% of trials).  

 
 

 

 

dormmate
1 s

interstimulus interval 
1 - 8 s

interstimulus interval 
1 - 8 s

attention check
1 s

dormmate
1 s



Functional Reward Localizer 

Task description. The reward localizer (Fig. S4) was a novel combination of two 

popular reward tasks, blending elements of the Monetary Incentive Delay task [5] with a card-

guessing task [6-8]. Before entering the scanner, the experimenter told participants that they 

would be playing a card-guessing game and could win real money for themselves (for two 

randomly selected games). Participants played games in which they could (i) potentially gain 

money (20 trials) or (ii) receive no money (10 trials). These 30 trials were fully randomized in 

one functional run. Because our main goal was to localize neural activity related to rewarding 

outcomes, we only describe potential gain trials below.  

Figure S4. A schematic for potential gain trials in the card-guessing game. Participants viewed 
(1) a crosshair during the intertrial interval (ITI), (2) saw their own photo and a cue indicating 
that they could win $5, (3) guessed whether the card would be above or below 5, and (4) saw the 
value of the card and the amount of money they received.  
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For potential gain trials, participants viewed (1) a crosshair during the intertrial interval 

(ITI) for 2, 4, or 6 s, (2) saw their own photo along with a cue indicating that they could 

potentially win $5 (i.e., a circle with a line at the top) for 2, 2.25, or 2.5 s, (3) guessed whether 

the card would be above 5 (i.e., up arrow) or below 5 (i.e., down arrow) from a deck of cards 

from 1-9 (excluding 5) for 2 s, and (4) saw the actual value of the card (e.g., 8 or 3) and the 

corresponding amount of money they gained or did not gain (i.e., +5.00 or $0.00) for 2 s (Fig. 

S4). A correct guess yielded a monetary gain of $5 (in green), whereas an incorrect guess 

resulted in $0 (in white). If participants failed to make a card guess, participants saw the word 

“MISS” in red. Outcomes were preprogrammed to lead to 50% reward and 50% no-reward 

outcomes.  

Analytical approach. We aimed to identify striatal regions related to the receipt of 

reward (not reward anticipation). We estimated first-level effects with the general linear model. 

In this model, the two covariates of interest included the 10 reward outcomes (i.e. +$5) and the 

10 no-reward outcomes (i.e., $0) for the potential gain trials (see Fig. S4). If participants failed to 

make a guess, these “misses” were modeled as a covariate of no interest. In addition, all other 

parts of the potential gain trials (i.e., cues and card guesses) were modeled as separate nuisance 

regressors. Lastly, the six motion parameters and time points with excessive motion or in-brain 

global signal were also included as additional covariates of no interest. All trial components were 

modeled as a boxcar spanning their duration and convolved with a double-gamma HRF and 

high-pass filtered (cutoff of 128 s). Serial autocorrelations were modeled as an AR(1) process.  

For each participant, we created contrast images comparing reward outcomes to no-

reward outcomes. Then, we computed random effects analyses of the group using the contrast 

images generated for each participant. The threshold was raised until we could identify a distinct 

cluster for bilateral ventral and dorsal striatum, with a final threshold of p < .00000001 



(uncorrected).  We then used this cluster in the striatum as a region of interest (ROI) during 

leave-one-out cross-validation analyses. The unthresholded map is available on NeuroVault: 

http://neurovault.org/images/51937/.  

We only selected the striatum because all additional regions that were activated in the 

reward localizer were redundant with other regions of interest. In addition to the striatum, the 

reward localizer activated the MPFC, DMPFC, VMPFC, and poster cingulate. However, these 

regions significantly overlapped with ROIs we generated on Neurosynth for the mentalizing 

network (see below). Therefore, we decided to use the ROIs generated from Neurosynth because 

those were derived from 124 studies (rather than a single study).  

Regions of Interest 

In addition to the ROI created for reward receipt (see above), we also created ROIs for 

regions related to mentalizing. First, we searched for the term “mentalizing” on Neurosynth 

(http://www.neurosynth.org/analyses/terms/mentalizing/) and found 124 studies associated with 

this key term. Next, we downloaded the reverse inference map (FDR-corrected at p = .01). From 

this map, we selected the following clusters as separate ROIs: (1) dorsomedial, medial, and 

ventromedial prefrontal cortex (labelled as “MPFC” in main manuscript), (2) precuneus/posterior 

cingulate (labelled as “PMC” in main manuscript), (2) R temporoparietal junction, (3) L 

temporoparietal junction, (4) R temporal poles, and (5) L temporal poles.   

For comparison in leave-one-out cross-validation analyses, we also created an ROI of the 

primary visual cortex as a “control” region. We searched for the term “V1” on Neurosynth 

(http://www.neurosynth.org/analyses/terms/v1/) and found 89 studies associated with this key 

term. We then downloaded the reverse inference map (FDR-corrected at p = .01) and selected the 

largest and most medial cluster that included the highest number of voxels in Brodmann’s Area 

18. For all ROIs, individual clusters were: (i) selected in xjView and exported as masks, (ii) 



imported into MarsBaR [9] and converted to ROIs, and (iii) and exported into the same image 

space as group-level analyses for the face-viewing task. 

  



Supplemental Results 

The Relationship Between Hub Index and Number/Strength of Ties 
 
Figure S5. The average number of unique ties for individuals in the low, middle, and high hub 
categories. Independent-samples t-tests showed that all categories were significantly different 
from each other (* p < .001) in both dorms. 
 

 

To decompose how the number and strength of ties relates to hub index, we conducted 

multiple regression analyses in each dorm.  We entered two simultaneous predictors to predict 

hub index: (i) number of unique connections across all 8 questions and (ii) average number of 

questions nominated for (i.e., strength of ties). In both dorms, the number of ties positively 

related to hub index (Dorm A: b = .92, p < .001, Dorm B: b = .93, p < .001; Fig. S6). The 

strength of ties also positively related to hub index (Dorm A: b = .27, p < .001 Dorm B: b = .29, 

p < .001), but not as strongly. Stepwise regression analyses further revealed that the number of 

ties predicts 85% (Dorm A) - 87% (Dorm B) of the variance in hub index, after controlling for 

the strength of ties. In contrast, the strength of ties predicts 7% (Dorm A) - (Dorm B) 9% of the 

variance, after controlling for the number of ties. Thus, higher hub index scores were primarily 

driven by the number of unique connections and less so by the strength of these connections. 
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Figure S6. The relationship between the number of unique ties and hub index. 
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Table S2.  Parametric effect of targets’ idiosyncratic hub index, after controlling for the 
perceiver’s nominations and their self-reported closeness to targets. 

 

Region Name 
Cluster size 

(voxels) Peak t-score Peak MNI coordinates (mm) 
      x y z 
R caudate 96 5.350 24 17 19 

  
4.315 21 -16 28 

L caudate 74 5.143 -15 5 22 

  
3.915 -21 23 13 

R cerebellum 123 5.142 51 -73 -17 

  
3.900 18 -70 -29 

  
3.687 39 -91 -20 

Precuneus/occipital lobe 75 4.683 3 -85 46 
L temporal pole 79 4.599 -51 5 -29 
Medial prefrontal cortex 111 4.536 9 47 4 
Medial prefrontal cortex 47 4.224 3 68 22 
Notes. Coordinates are all local maxima separated by at least 20 mm. L and R refer to left 
and right hemispheres. x, y, and z are Montreal Neurological Institute (MNI) coordinates in 
the left-right, anterior-posterior, and inferior-superior dimensions, respectively.   

 
 
Table S3. Average within-subject correlation between predicted and actual hub category in 
different ROIs, separately for univariate and multivariate pattern prediction.  
 

Region R (univariate) R (multivariate) 

Mentalizing Network .337 ± .100 ** .343 ± .090 ** 
MPFC .318 ± .098 ** .405 ± .094 *** 

PMC .339 ± .095 ** .318 ± .099 ** 
L TP .297 ± .098 ** .319 ± .091 ** 
R TP .276 ± .105 ** .207 ± .101 * 

L TPJ .311 ± .095 ** .259 ± .095 *  
R TPJ .246 ± .098 * .247 ± .095 * 

Striatum .136 ± .096  .298 ± .091 ** 
V1 .164 ± .103 .086 ± .100 

Notes. Statistical significance was assessed using non-parametric 
permutation tests. Plus-minus values indicate standard error of the 
mean. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 
  



Figure S7. Univariate prediction of social value hubs. A) Neural activity was averaged in the 
depicted regions of interest (ROI) and used to predict hub category in leave-one-out cross-
validation models. B) Forced-choice accuracy between different hub categories for each ROI. * p 
< 0.05 for a two-sided binomial test. MPFC = medial prefrontal cortex; PMC = posterior medial 
cortex; TP = temporal poles; TPJ = temporoparietal junction; R = right; L = left. Red: regions 
associated with mentalizing; blue: regions associated with value computation; grey: control 
region.  
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Figure S8. Average standardized pattern response to hub index. The standardized pattern 
response was computed as the spatial correlation between the activation map for each level of 
hub index and the multivariate pattern associated with increasing social hub index. Higher 
pattern response indicates that the activation map was more similar to the pattern associated with 
increasing hub index. Percentage indicates forced-choice classification between each pairwise 
comparison. Error bars indicate SEM across participants. * p < 0.05 for a two-sided binomial test. 
MPFC = medial prefrontal cortex; PMC = posterior medial cortex; TP = temporal poles; TPJ = 
temporoparietal junction; R = right; L = left. 
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Additional Evidence for Non-Linear Relationship Between Hub index and Neural Activity  

If social value is tracked linearly, we would expect the classifiers to show increasing 

predicted values from low to medium hub category, and from medium to high hub category. 

Critically, the differences in predicted values between low vs. medium and medium vs. high hub 

category would be roughly equal to each other. In contrast, if social value is tracked in a non-

linear manner, then we would expect that these same comparisons would not be equal. When we 

tested these differences in predicted value for the univariate (Table S4) and multivariate 

classifiers (Table S5), we showed that the increase in predicted response is greater from middle 

to high hub index, than from low to middle hub index. These results provide further evidence 

that the relationship between hub index and neural activity was in fact non-linear, with a much 

stronger neural response to targets high in social value. 

 

Table S4. Increase in predicted response from univariate activity is higher from middle to high 
hub category than from low to middle hub category 

ROI Mid > Low High > Mid Difference 

Mentalizing Network -0.01 (0.06) 0.22 (0.06)  t(49) = 2.18, p = 0.017 
MPFC -0.03 (0.06) 0.21 (0.06)  t(49) = 2.46, p = 0.009 
PMC 0.01 (0.07) 0.20 (0.06) t(49) = 1.76, p = 0.042 
R TP -0.03 (0.05) 0.17 (0.05) t(49) = 2.45, p = 0.009 
L TP -0.04 (0.06) 0.19 (0.05) t(49) = 2.42, p = 0.010 
R TPJ -0.01 (0.05) 0.11 (0.04) t(49) = 1.50, p = 0.070 
L TPJ 0.03 (0.06) 0.15 (0.06) t(49) = 1.16, p = 0.127 

Striatum -0.02 (0.03) 0.04 (0.03) t(49) = 1.17, p = 0.124 
V1 -0.01 (0.03) 0.04 (0.03) t(49) = 1.00, p = 0.160 

Notes. Parentheses denote the standard error of the mean.  ROI = region of interest; 
MPFC = medial prefrontal cortex; PMC = posterior medial cortex; TP = temporal 
poles; TPJ = temporoparietal junction; R = right; L = left. p-value determined by a 
right-tailed paired t-test. 

 

  



Table S5. Increase in predicted response from multivariate activity is higher from middle to high 
hub category than from low to middle hub category 

ROI Mid > Low High > Mid Difference 

Mentalizing Network -0.03 (0.09) 0.33 (0.08)  t(49) = 2.40, p = 0.010 
MPFC -0.04 (0.09) 0.41 (0.06)  t(49) = 3.74, p < 0.001 
PMC -0.03 (0.07) 0.22 (0.07) t(49) = 1.69, p = 0.049 
R TP -0.04 (0.06) 0.21(0.06) t(49) = 2.33, p = 0.012 
L TP -0.01 (0.08) 0.25 (0.06) t(49) = 2.09, p = 0.021 
R TPJ -0.01 (0.06) 0.14 (0.05) t(49) = 1.42, p = 0.081 
L TPJ 0.01 (0.06) 0.16 (0.07) t(49) = 1.39, p = 0.086 

Striatum 0.01 (0.05) 0.16 (0.06) t(49) = 1.35, p = 0.092 
V1 -0.02 (0.05) 0.07 (0.06) t(49) = 1.00, p = 0.160 

Notes. Parentheses denote the standard error of the mean.  ROI = region of interest; 
MPFC = medial prefrontal cortex; PMC = posterior medial cortex; TP = temporal 
poles; TPJ = temporoparietal junction; R = right; L = left. p-value determined by a 
right-tailed paired t-test. 

 

Table S6. Comparison between prediction for mean activity versus multivariate patterns. The 
difference column reports the results from each paired-samples t-test, comparing root mean 
squared error (RMSE) from multivariate prediction to RMSE from univariate prediction.  

 
 

Region Average 
Multivariate RMSE 

Average 
Univariate RMSE Difference 

Mentalizing 
Network .743 .752 t(49)= -0.367, p=0.716 

MPFC .700 .761 t(49)=-2.779 p=0.008** 

PMC .742 .753 t(49)=-0.436, p=0.665 

R TP .769 .776 t(49)=-0.552, p=0.583 

L TP .747 .769 t(49)=-1.571, p=0.123 

R TPJ .787 .782 t(49)=-0.377, p=0.708  

L TPJ .771 .764 t(49)=0.583, p=0.562 

Striatum .774 .813 t(49)= -2.055, p=0.045* 
V1 .809 .808 t(49)=0.054, p= 0.957 

Notes. * p < 0.05, ** p < 0.01. RMSE = root mean squared error; ROI = region of interest; 
MPFC = medial prefrontal cortex; PMC = posterior medial cortex; TP = temporal poles; TPJ 
= temporoparietal junction; R = right; L = left. 



Multivariate Prediction With and Without Mean Signal Removed 

We compared predictive accuracy of the multivariate model with and without the mean 

ROI signal removed. When the mean ROI signal was not removed, most ROIs in the mentalizing 

network and the striatum had above chance predictive accuracy (Fig. S8). We then removed the 

mean ROI signal by z-scoring the voxels in each ROI. Predictive accuracy was above chance 

only in the MPFC (t(49) = -2.60, p = 0.012), suggesting that fine-grained patterns contributed to 

the prediction in the MPFC, but not in the other ROIs. 

 

Figure S9. Multivariate patterns do not contribute substantially to predicting hub index outside 
of the MPFC. A. Leave-one-participant-out cross-validated root mean squared error (RMSE) 
when predicting hub index multivariate patterns, without removing mean ROI activity. RMSE 
was compared to “chance” RMSE of 0.816 (the RMSE if the algorithm always predicted the 
mean hub index; dotted line). There was better than chance accuracy in most ROIs in the 
mentalizing network and the striatum, but not V1. B. RMSE when predicting hub index from the 
multivariate patterns, removing mean ROI activity. RMSE was only better than chance in the 
MPFC. * p < 0.05, † < 0.10. 
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Whole-Brain Multivariate Prediction  

We repeated the multivariate prediction analysis across 100 ROIs taken from a whole-

brain functional parcellation [10]. For each ROI, we performed the same leave-one-participant-

out cross-validated prediction analysis and computed the root mean squared error (RMSE) of the 

prediction for each participant. We then tested the RMSE against chance, defined as the RMSE if 

the algorithm always predicted the mean hub category, to obtain a t-statistic and p-value for each 

ROI. No ROI survived correction when controlling for false-discovery rate of q < 0.05. When we 

inspected the t-map thresholded at p < 0.01 (unthresholded t-map available at: 

https://neurovault.org/collections/2715/; Fig. S8), we found activity in regions related to 

mentalizing and value processing, including the dorsomedial prefrontal cortex, temporal poles, 

angular gyrus, and striatum significantly predicted hub status. Only one region outside of these 

networks – the anterior insula – explained significant variance in the prediction. 

 
Figure S10. Whole-brain multivariate prediction.  We repeated the multivariate prediction 
analysis across 100 ROIs taken from a whole-brain functional parcellation [10]. Resulting t-map 
was thresholded at p <0.01. No ROI survived correction when controlling for false-discovery 
rate with q < 0.05.  

 
 

  
 

 

 



Unique Effects of Target Characteristics on Neural Activity 

In order to examine the unique effects of other target characteristics, we conducted a 

parametric analysis with three parametric modulators in the general linear model: (i) hub index, 

(ii) pre-scan ratings of closeness, and (iii) pre-scan ratings of attractiveness. Activity in inferior 

frontal gyrus scaled with personal closeness. No significant clusters were parametrically 

modulated by attractiveness.  

Neuroimaging Analyses Without Personal Relationship Covariates  

To examine whether the results are robust and hold when removing covariates related to 

the personal relationship between the perceiver and the target, we repeated all neuroimaging 

analyses without any covariates. More specifically, we did not exclude personal nominations 

when calculating the hub index and did not control for subjective ratings of closeness.  For the 

univariate parametric analyses (http://neurovault.org/collections/2715/), the results are similar to 

the results that control for personal relationships, with more robust clusters appearing in regions 

related to mentalizing (i.e., medial prefrontal cortex, posterior medial cortex, temporoparietal 

junction, and temporal poles) and value processing (i.e., striatum). We also repeated the 

univariate and multivariate prediction analyses without personal relationship covariates. Forced 

classification accuracy rates (Fig. S9) were highly similar when compared to results accounting 

for personal relationships. 

 

  



Figure S11. Forced-choice classification results without personal relationship covariates. In 
both univariate and multivariate prediction analyses, accuracy was above chance when 
classifying between high vs. medium and high vs. low social support individuals.  
 
 

 

 

Neuroimaging Analyses Controlling for Target Attractiveness  

One alternative account for our results is that participants’ brains might be picking up on 

the attractiveness of the faces, as attractive individuals might draw more social connections than 

less attractive ones. To rule out this possibility, we repeated all analyses while controlling for the 

subjective attractiveness of the faces (in addition to the original covariate of personal 

nominations and personal closeness). For the univariate parametric analyses 

(http://neurovault.org/collections/2715/), the results are very similar when controlling for 

attractiveness: significant clusters appear in regions related to mentalizing (i.e., medial prefrontal 



cortex, temporal poles) and value processing (i.e., striatum). We also repeated the univariate and 

multivariate prediction analyses while adding the additional covariate of attractiveness. Forced 

classification accuracy rates (Fig. S10) also remained highly similar to our original results. 

Furthermore, the attractiveness ratings were only weakly correlated with idiosyncratic hub index 

(average within-subject correlation = .14), suggesting that attractiveness is not a confound. 

Effect of Scan Date on Neural Activity 

We ran additional analyses to test if scan date was associated with forced-choice 

classification accuracy for hub index. We did not find evidence that scan date impacted the 

ability to detect hubs.  For each participant, we calculated the number of days between the social 

network nominations during Week 2 of the quarter and their fMRI scan. We then conducted 

binary logistic regression analyses with number of days as a predictor of forced-choice 

classification accuracy for (1) middle vs. low hub index, (2) high vs. middle hub index, and (3) 

high vs. low hub index. Results indicated that there were no significant associations for any of 

these models: c2(1) = .04, p = .84 for Model 1; c2(1) = .00, p = .99 for Model 2; and c2(1) = .9, p 

= .34 for Model 3. 

  



Figure S12. Forced-choice classification results controlling for face attractiveness, personal 
nominations, and subjective closeness of the participant. In both univariate and multivariate 
prediction analyses, accuracy was above chance when classifying between high vs. medium and 
high vs. low social support individuals  
 
 

 
 

Individual Differences in Hub Detection 

 In two additional analyses, we investigated whether perceivers’ characteristics –“hubness” 

and trait empathy – would impact their ability to detect hubs. However, neither of these 

characteristics was associated with enhanced hub detection in our data set. We ran binary logistic 

regression analyses with participants’ hub index as a predictor of forced-choice classification 

accuracy for detecting targets with (1) middle vs. low hub index, (2) high vs. middle hub index, 

and (3) high vs. low hub index. Results indicated that there were no significant associations for 



any of these models: c2(1) = 1.84 , p = .18 for Model 1; c2(1) = .2, p = .65 for Model 2; and c2(1) 

= .81, p = .38 for Model 3. 

All participants in this sample completed a battery of 21 trait measures that broke down 

into four main trait clusters (i.e., empathy, life satisfaction, positive emotion, and negative 

emotion) [11]. The empathy factor included several social cognition measures (i.e., empathic 

concern, perspective-taking, positive empathy, prosociality, and agreeableness). Therefore, we 

conducted binary logistic regression analyses with the empathy factor as a predictor of forced-

choice classification accuracy for (1) middle vs. low hub index, (2) high vs. middle hub index, 

and (3) high vs. low hub index. There were no significant associations for any of these models: 

c2(1) = 2.86 , p = .09 for Model 1; c2(1) = .4, p = .35 for Model 2; and c2(1) = 1.23, p = .27 for 

Model 3. 

Forced-Choice Classification Results with Two and Four Hub Categories 

When we binned the data into two bins, forced-choice classification accuracy based on 

mean ROI activity was above chance in the mentalizing network, MPFC, RTP, and LTP, but not 

different from chance in the other ROIs (Fig. S11). Classification based on multivariate activity 

was above chance in the mentalizing network but not in the other ROIs. Overall, these results 

suggest that we can distinguish between the top and bottom half of participants based on hub 

index, though the reliability across ROIs was diminished when predicting based on multivariate 

activity. One reason for the weaker results could be that by dividing the into two bins, the top bin 

would also include individuals with a medium social hub index, which we had shown in our 

original analysis to be indistinguishable from those with low social hub index.  

  



Figure S13. Forced-choice classification results when dividing targets into two hub 
categories. Classification based on mean ROI activity was above chance in the mentalizing 
network, MPFC, RTP and LTP, but not different from chance in the other ROIs. Classification 
based on multivariate activity was above chance in the mentalizing network.  
  

 
 

 

When we binned the data into four bins, we could reliably distinguish between the top 

and bottom quartiles from both mean and multivariate activity in all ROIs in the mentalizing 

network (i.e., 1  vs 4; Fig. S12). In line with our previous findings, this suggests that hubs are 

closely tracked and can be distinguished from the least supportive individuals. In the bilateral 

temporal poles, we could accurately classify between the top quartile and the second quartile. In 

all other cases, forced-choice classification was at chance when comparing the top quartile to the 

middle quartiles (i.e., 1 vs. 2 and 1 vs. 3), as well as between consecutive quartiles (i.e. 1 vs. 2, 2 
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vs. 3, 3 vs. 4). These results suggest that the number of individuals in each bin might be 

inadequate for us to cleanly resolve between different quartiles. 

 
Figure S14. Forced-choice classification results when dividing targets into four hub 
categories. In the mentalizing network, forced choice classification performance was better than 
chance when distinguishing between the top quartile (quartile 1) and the bottom quartile 
(quartile). In the bilateral temporal poles (RTP, LTP), forced choice classification performance 
was also better than chance when distinguishing between the top and second quartile. Forced-
choice classification performance was at chance in all other cases and in all other ROIs. 
 

 

 
 

Taken together, these additional analyses suggest that a median split and quartile splits 

divide the data into bins that are too coarse or too low in power, respectively. We believe this 

stems from the fact that brain responses to targets are non-linear—with sensitivity favoring high 

hub index targets—which is not well represented in the median split, and that a quartile split 
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decreases our power to detect relationships between brain activity and hub index. In contrast, 

dividing it into three bins allowed us to identify a top tercile containing individuals that evoked a 

distinct neural response than the other two terciles. 

Within-Subject Prediction of Hub Category 

We randomly assigned the faces presented to each participant to one of two equally sized 

groups (N = 15 for each group). We trained the prediction algorithm on one group, and tested it 

on another group. Forced-choice classification accuracy was then averaged across subjects to 

assess prediction performance. Accuracy was at chance both when prediction was performed 

over average ROI activity and when prediction was performed over multivariate activity (Fig. 

S13). Given that each subject saw only 30 faces, it is likely that data from individual subjects are 

insufficient to train an accurate prediction algorithm.  In our study, we were primarily interested 

in investigating whether there were between-subject similarities in how hubs are represented, and 

thus prioritized scanning more subjects rather than more data per subject.  

Trait Characteristics of Social Value Hubs 

To explore whether dorm members identify individuals as hubs on the basis of 

characteristics specifically related to social value as operationalized here (e.g., social support and 

prosociality), we used personality data collected from on each dorm member as part of a prior 

study [11].  All participants in this sample completed a battery of 21 trait measures. A factor 

analysis of these measures revealed four main trait clusters: (i) empathy, (ii) life satisfaction, (iii) 

positive emotion, and (iv) negative emotion (see Fig. 1 in Morelli et al., 2017). We used these 

four factors as simultaneous predictors of hub index in a multiple regression analysis. Empathy 

emerged as the only significant predictor of hub index (b = .294, p = .006) and predicted 

individuals’ hub status above and beyond the effects of life satisfaction (b = .177, p = .106), 

positive emotion (b = .004, p = .97), and negative emotion (b = .042, p = .697). This suggests 



that hub status reflects characteristics specific to empathy and social support, and not more 

general halo effects.    

 

Figure S15. Within-subject prediction results. Forced-choice classification accuracy was at 
chance across all ROIs both when prediction was performed using average ROI activity 
(univariate prediction) and when prediction was performed using multivariate patterns 
(multivariate prediction).  
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