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Supplementary Note 1: Impaired performance on the task was not due to differences in perceptual 
sensitivity. Participants who were more strongly biased by the motivation manipulation made more 
incorrect categorizations in the experimental task. We argue that this is because these participants were 
more strongly motivated to see the motivation-consistent category. An alternative account is that biased 
participants had lower perceptual sensitivity (i.e. worse at distinguishing faces and scenes). That is to say, 
biased participants relied more on the bet information not because they were more affected by their 
motivation to see a particular category, but because they had less access to objective perceptual 
information.   
 
We can test this alternative hypothesis by examining the effect of % scene on the drift rate at the between-
subject level, which, when controlling for the effects of motivation, provides a proxy measure of 
perceptual sensitivity. Consider an image that has 55% scene – relative to a participant with high 
perceptual sensitivity, a participant with low perceptual sensitivity would accumulate evidence more 
slowly towards the scene threshold, which would be reflected as a drift rate that is less positive. 
Conversely, for an image with 45% scene, the participant with low perceptual sensitivity would 
accumulate evidence more slowly towards the face threshold, which would be reflected as a drift rate that 
is less negative. As such, participants with lower perceptual sensitivity would also exhibit a weaker 
relationship between % scene and drift rate (Supplementary Figure 1A). We thus fit a model with a 
different drift rate for each level of % scene and each motivation consistent category (i.e. 2 levels of 
motivation x 9 levels of percentage scene = 18 parameters), and examined if participants with stronger 
motivational bias also have a weaker relationship between % scene and drift rate.  
 
Individual differences in motivational bias did not moderate the relationship between % scene and drift 
rate (linear mixed effects model (lme): two-tailed, one sample t(535) = -0.908,  p = 0.419, b = -0.02, 95% 
CI = -0.08 to 0.03), suggesting that individual differences in bias were not related to subjective perceptual 
uncertainty. Unsurprisingly, individual differences in motivational bias moderated the effect of 
motivation on the drift rate (lme: two-tailed, one sample t(535) = 2.55, p = 0.01, b = 0.15, 95% CI = 0.01 
to 0.28). To better interpret this result, we plot the drift rate at each level of % scene separately for high 
bias and low bias participants (Supplementary Figure 1B). The main effect of % scene and drift rate were 
visually indistinguishable between the two groups. In contrast, the effect of motivation on the drift rate 
was clearly stronger in the High Bias group. These results suggest that biased participants made more 
mistakes not because they were less sensitive to the objective sensory information, but because they were 
more motivated to see the motivation consistent category.  
 
Supplementary Note 2: Effects of motivational bias were not confounded with general differences in 
attention. Participants who were more biased in their categorizations could have also performed worse 
because they were less attentive to the task. Given that attention has a strong influence on perceptual 
sensitivity1, the preceding analyses showing that motivational bias did not correlate with perceptual 
sensitivity indicates that this is unlikely.  
 
As a second control analysis, we examined whether motivational bias correlated with performance on the 
localizer task (categorizing a face as male or female, and a scene as indoor or outdoor). If biased 
participants were “bad” participants who did not attend to the task, they might also perform poorly on the 
localizer task. Motivational bias did not correlate with performance on the localizer task (Pearson r = -
0.121, p = 0.523), though performance on the localizer task was close to ceiling (M = 97.7%, SE = 0.3%), 
and it is possible that this analysis does not have the sensitivity to detect a relationship between 
motivational bias and localizer task performance. 
 
We thus ran a third control analysis that relied on the multivariate classifier’s accuracy in classifying 
whether participants were seeing a face or a scene during the localizer task. Attention enhances category-
specific patterns in the visual cortex2, and would improve the classifier’s ability to classify the presented 



image. Thus, classifier accuracy can be taken as a proxy measure of participants’ attention during the 
localizer task. For each participant, we randomly divided the localizer data into five equally sized sets of 
trials. The classifier was then trained on four sets and tested on the fifth, held-out set. This procedure was 
repeated five times, holding out a different set each time, to calculate the five-fold cross-validation 
accuracy (M = 81.8%, SE = 1.2%).  
 
Cross-validation accuracy on the localizer task was not correlated with motivational bias in the main 
experiment (Pearson r = 0.149, p = 0.432), providing additional evidence that motivational bias was not 
related to differences in general attention. Importantly, this result also indicates that the effect of 
motivation on classifier probability in the main experiment could not be explained by differences in the 
classifier’s ability to pick up on category-selective activity. Taken together, these results suggest that 
participants who were more biased made more incorrect categorizations and showed greater biases in 
category-selective neural activity in the main experiment, not because they were less attentive, but 
because they were more affected by the motivation manipulation.  
 
Supplementary Note 3: Model recovery study indicates that DIC reliably recovers the true model 
from simulated data. To assess whether DIC is an accurate metric for model comparison, we ran a 
model recovery study to examine how often DIC identifies the true model from simulated data. We 
simulated choice and reaction time data with parameter values sampled from the posterior distribution 
estimated when fitting each of the four models (z & v model, z model, v model and null model) to 
participants’ data. For each model, we generated 100 datasets, each with the same number of participants 
and trials as the original dataset. The simulated datasets reflect the pattern of choice and reaction times if 
participants’ behavior were perfectly described by the models. We then fit all four models to each dataset, 
and assessed how often DIC correctly identified the model that generated that dataset.  
 
DIC correctly identified the true model in 76.5% of the simulations (Supplementary Figure 5A). In almost 
all cases where DIC selected the wrong model (86 out of 94), there was only weak evidence in favor of 
the incorrectly selected model (|DDIC| < 5; Supplementary Figure 5B). In contrast, the model fits to 
experimental data yielded much larger differences in DIC in favor of the z & v model (z & v vs. z: DDIC = 
-84; z & v vs. v: DDIC = -11, null: DDIC = -200). These results support the use of DIC as a model 
comparison metric, and indicate that the DIC results reported in our manuscript provide strong evidence 
that the z & v model is the model that best fits participants’ behavior. 
 
Supplementary Note 4: Model fits of z & v model provide a closer match to empirical data than the 
other models. Conditional response functions provide a visual illustration of how the z & v model fits the 
data better than the other models (Supplementary Figure 6). Each conditional response function plots 
response proportions as a function of reaction time quantiles3, separately for each motivated category. The 
differences between the models can be seen at each level of % scene (Supplementary Figure 6A). For the 
ease of exposition, we averaged the function across all levels of % scene (Supplementary Figure 6B).  
 
For all models with a bias mechanism (z&v, z, v), the proportion of scene responses was higher when 
participants were motivated to see more scene than when participants were motivated to see more face. 
For the z model, the difference is most pronounced for trials with short RTs (e.g., Q1) and is no longer 
present for trials with longer RTs (e.g., Q4-Q5). For the v model, the difference is constant across all RT 
quantiles. An intuitive explanation for these patterns is that a bias in starting point (z bias) would have the 
strongest effect early on in a trial, while a bias in drift rate (v bias) acts on evidence accumulation 
throughout a trial (see also Supplementary Figure 3). A model with both biases would have an RT pattern 
that falls between that of the z model and that of v model. Hence for the z & v model, the effect of 
motivation is strongest in the first quantile, diminishes for longer RTs, but remains visible even at the 
slowest quantile.  
 



We can see that the empirical data is clearly inconsistent with that of the z and null models. It is less easy 
to adjudicate between the z & v model and v model. Visual inspection suggests that the effect of 
motivation does indeed diminish with increasing RT, and this pattern is particularly pronounced when we 
examined the trials at 50% scene, which is also the condition with the most number of trials. This would 
suggest that the empirical data best matches simulated data generated by the z & v model. While it is 
possible to quantify the extent to which the conditional response function matches that of the z & v model, 
we believe this would be redundant with the formal comparison using DIC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Supplementary Figures 

 
Supplementary Figure 1. Motivational bias was not related to perceptual sensitivity. A. Schematic 
illustration of relationship between % scene and drift rate for an individual with low perceptual sensitivity 
(left) and an individual with high sensitivity (right). For an individual with low perceptual sensitivity, the 
drift rate for face majority images (i.e. % scene < 50%) will be less negative, while the drift rate for scene 
majority images (i.e. % scene > 50%) will be less positive, resulting in an overall weaker relationship 
between % scene and drift rate. B. Relationship between % scene and drift rate, separately for High 
Bias and Low Bias participants. The two groups differed only in the effect of motivation on the drift 
rate (i.e. vertical distance between blue and red dots; lme: two-tailed, one sample t(535) = 2.55, p = 0.010, 
b = 0.15, 95% CI = 0.01 to 0.28), and not in the relationship between % scene and drift rate (i.e. average 
slope; lme: two-tailed, one sample t(535) = -0.908,  p = 0.419, b = -0.02, 95% CI = -0.08 to 0.03). Blue: 
drift rate when participants were motivated to see more scene. Red: drift rate when participants were 
motivated to see more face. Error bars indicate across-subject SEM. 
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Supplementary Figure 2. Behavioral results were replicated in an independent sample of thirty 
participants A. Participants were more likely to categorize the ambiguous image as what they wanted to 
see. Cooperation Condition: Participants’ psychometric function was shifted left when the teammate bet 
on more scene (blue) relative to when the teammate bet on more face (red), indicating that less scene 
evidence is needed to categorize an image as having more scene. Competition Condition: Participants’ 
psychometric function was shifted right when the opponent bet on more scene (blue) relative to when the 
opponent bet on more face (red), indicating that more scene evidence is needed to categorize an image as 
having more scene. Statistical significance was assessed using a generalized linear mixed-effects model 
(see Methods). Error bars indicate S.E.M. B. Magnitude of bias in each participant, defined as the random 
slope of the Bet x Condition interaction. C.  Participants with stronger motivational bias performed worse 
on the task and received lower earnings (Pearson’s r = -0.45, p = 0.015; robust regression: F(1, 26) = 5.98, 
p = 0.022, b = -0.53, 95% CI = -0.96  to -0.10) 
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Supplementary Figure 3. Effects of starting point and drift biases on choice and reaction time 
distributions. Both biases increase the proportion of motivation consistent responses, but have different 
effects on the shape of reaction time distributions. Each model was simulated 2000 times, but only the 
first 20 simulated trajectories are shown. Each color indicates a single trajectory. dv: decision variable (i.e. 
evidence accumulated). A. Unbiased model. Left: Simulated trajectories with threshold a = 2.4, non-
decision time t = 0.5, relative starting point z = 0.5, drift rate v = 0, and histogram of reaction times for 
scene (top) and face (bottom) responses. Right: Proportion of scene and face responses. B. Model with 
starting point biased towards the scene threshold, z = 0.67, v = 0.00. This increases the proportion of 
scene responses, and results in different skews for the two reaction time distributions. Notably, the mode 
of the reaction time distribution of scene responses is substantially shifted to the left of the reaction time 
distribution of face responses (i.e. increase in the number of fast motivation consistent responses, and 
decrease in the number of fast motivation inconsistent responses). C. Model with drift rate biased towards 
the scene threshold, z = 0.50, v = 0.30. This also increases the proportion of scene responses, but with a 
smaller effect on the shape of reaction time distributions (i.e. increase in the number of both fast and slow 
motivation consistent responses, and decrease in the number of both fast and slow motivation inconsistent 
responses). Both reaction time distributions have similar modes. D. Model with both starting point and 
drift rate biased towards the scene threshold, z = 0.58, v = 0.15. This also increases the proportion of 
scene responses, with an intermediate effect on the shape of reaction time distributions. 
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Supplementary Figure 4. Pattern of reaction times were not significantly different between the 
Cooperation and Competition conditions. There was neither a main effect of Condition (lme: two-
tailed, one sample t(31) = 0.21, p = 0.832, b = 0.003, 95% CI = -0.027 to 0.033) nor an interaction effect 
of Condition and Response (lme: two-tailed, one sample t(28) = 1.27, p = 0.205, b = 0.02, 95% CI = -
0.015 to 0.071) on reaction times, suggesting that overall reaction times did not differ significantly 
between conditions. More importantly, the triple interaction between Condition, Motivation Consistent 
Category, and Response on reaction times was not significant (lme: two-tailed, one sample t(24) = 0.328, 
p = 0.328, b = 0.010, 95% CI = -0.090 to 0.127) indicating that the effects of motivation on reaction time 
were comparable between the two conditions. Trial types with less than 24 trials (i.e. 1% of total trials in 
each condition) were excluded from the plot because there were too few trials for reliable estimates and 
they tend to come from a small number of participants. Blue: Motivated to see scene; Red: Motivated to 
see face. Error bars indicate between-subject SEM.  
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Supplementary Figure 5. DIC correctly identifies the true model used to generate simulated data. A. 
Confusion matrix when using DIC to identify the model that generated simulated data. Each row indicates 
the percentage of simulations on which data generated by a particular model is best fit by each of the 
models. The diagonal indicates accurate model recovery (e.g., correctly identifying z & v model when 
fitting to data generated by the z & v model). B. Pairwise comparisons of model recovery results between 
the z & v model and the other three models. Histograms show the difference in DIC between the two 
models when fitting to data generated by different models. Shaded blue region indicates accurate model 
selection (e.g., DICz&v < DICz for data generated by the z & v model, and DICz &v > DICz for model 
generated by the z model). For comparison, inverted triangles indicate true DIC difference when fitting 
the models to participants’ data. The true DDICz&v - DDICz and DDICz&v - DDICnull are much larger than 
those obtained when fitting the models to data generated by the z and null models respectively, and are 
thus indicated with a leftward arrow so as to not distort the scale of the graph. Altogether, these results 
indicate that DIC is an accurate metric for model comparison, and that our results provide strong evidence 
that the z & v model provided the best fit to participants’ behavior.  
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Supplementary Figure 6. Conditional response functions for empirical and simulated data. A. Each 
plot shows response proportion as a function of reaction time at each level of % scene, separately for 
when participants were motivated to see more scene (Blue) and when participants were motivated to see 
more face (Red). Reaction times for each participant were binned into 5 quantiles (Q1: 20%, Q2: 40%, Q3: 
60%, Q4: 80%, Q5: 100%). The response proportion was computed for each quantile and averaged across 
participants. We also computed the conditional response functions for data generated by all four drift 
diffusion models. In the empirical data, the effect of motivation diminishes with longer RTs, but remain 
visible even at the slowest quantile. Only the z & v model reproduced this RT pattern (see also 
Supplementary Note). Motivation has no effect in the null model, hence the data in the MotFace condition 
is occluded by data in the MotScene condition. There were not enough trials at 0%, 35%, 65% and 100% 
scene to be divided into 5 quantiles. B. Conditioned response functions averaged across levels of % scene 
and then averaged across participants. In both panels, error bars indicate between-subject standard error.  
 
 
 
 

QuantileQuantile

P(
Sc

en
e)

Data z & v model z model v model null model

40% 45% 50% 55% 60%
P(

Sc
en

e)
40% 45% 50% 55% 60%

D
ata

z &
 v

z
v

null

0



 
Supplementary Figure 7. Observed and predicted choice and RT distributions for each participant. 
RTs for face responses were sign-flipped for illustration purposes. For each participant, we plot the RT 
distributions for face (negative RTs) and scene responses (positive RTs) separately for when the 
participant was motivated to see more face (MotFace) and for when the participant was motivated to see 
more scene (MotScene). Blue line indicates model-predicted choice and RT distributions. 
 

 



 
Supplementary Figure 8. Motivation biases face and scene selective neural activity during visual 
categorization.  Classifier probability that the presented image was a scene rather than a face based on 
the BOLD response in the ventral visual stream. Red dots: teammate or opponent betting that the next 
image will be a face. Scene probability was higher when participants were motivated to see a scene than 
when participants were motivated to see a face (lme: two-tailed, one-sample t(4756) = 2.05, p = 0.040, b 
= 0.038, 95% CI = 0.002 to 0.075).  
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Supplementary Tables 
 
Supplementary Table 1. Fitted values of model parameters. Estimate denotes posterior mean of the 
corresponding parameter. Square brackets denote 95% credible interval. Convergence was assessed using 
the Gelman-Rubin 𝑅" statistic. An 𝑅" of greater than 1.1 would indicate convergence problems. 𝑅" was less 
then 1.02 for all model parameters. a: threshold, t: non-decision time, zmotivation: coefficient of the effect of 
motivation on starting point, zintercept: intercept of starting point, vmotivation: coefficient of the effect of 
motivation on drift rate, v%scene: coefficient of the effect of percentage scene on drift rate, vintercept: intercept 
of drift rate. 

Parameters Estimate Gelman-Rubin 𝑹$  
z & v model   

a 2.373 [2.282, 2.46] 1.0002 
t 0.544 [0.466, 0.636] 1.0001 
zmotivation 0.051 [-0.003, 0.105] 1.0007 
zintercept 0.046 [0.030, 0.068] 1.0057 
vmotivation 0.092 [0.015, 0.168] 1.0000 
v%scene 0.702 [0.633, 0.772] 1.0000 
vintercept 0.094 [-0.014, 0.206] 1.0029 

z model   
a 2.369 [2.278, 2.462] 1.0001 
t 0.547 [0.470, 0.637] 1.0001 
zmotivation 0.120 [0.052, 0.192] 1.0002 
zintercept 0.052 [0.034, 0.070] 1.0088 
v%scene 0.695 [0.625, 0.769] 1.0000 
vintercept 0.087 [-0.021, 0.195] 1.0009 

v model   
a 2.372 [2.280, 2.466] 1.0000 
t 0.542 [0.463, 0.635] 1.0000 
zintercept 0.056 [0.033, 0.075] 1.0148 
vmotivation 0.121 [0.048, 0.195] 1.0001 
v%scene 0.702 [0.636, 0.771] 1.0004 
vintercept 0.087 [-0.023, 0.196] 1.0017 

null model   
a 2.345 [2.256, 2.436] 1.0000 
t 0.542 [0.464, 0.633] 1.0002 
zintercept 0.050 [0.033, 0.076] 1.0013 
v%scene 0.686 [0.612, 0.758] 1.0000 
vintercept 0.087 [-0.021, 0.195] 1.0023 

 
 
 
 
 
 
 
 



Supplementary Table 2. Difference in NAcc activity between Motivation Consistent and 
Inconsistent trials. NAcc activity was corrected for hemodynamic lag by shifting the BOLD data by 4 
seconds, and time-locked to image onset (t = 0). * two-tailed, one-sample t-test, uncorrected p < 0.05.  
Correction for multiple comparison was not performed as we know from the whole-brain contrast that 
NAcc activity on Motivation Consistent trials was higher than on Motivation Inconsistent trials. The goal 
of this analysis is to determine when this difference first emerged. 
 

Time (s) MotCon MotIncon Paired t-test 
-8 M =  0.024, SE = 0.018 M =  0.008, SE = 0.027 t(29) =  0.653, p = 0.259 
-6 M =  0.078, SE = 0.024 M =  0.085, SE = 0.025 t(29) = -0.238, p = 0.593 
-4 M =  0.059, SE = 0.023 M =  0.035, SE = 0.027 t(29) =  0.831, p = 0.206 
-2 M = -0.004, SE = 0.027 M = -0.082, SE = 0.028 t(29) =  2.234, p = 0.017* 
0 M =  0.015, SE = 0.028 M = -0.050, SE = 0.028 t(29) =  2.116, p = 0.022* 
2 M = -0.027, SE = 0.027 M = -0.083, SE = 0.027 t(29) =  1.893, p = 0.034* 
4 M =  0.028, SE = 0.025 M = -0.013, SE = 0.026 t(29) =  1.351, p = 0.094 
6 M =  0.047, SE = 0.026 M =  0.073, SE = 0.028 t(29) = -0.798, p = 0.784 
8 M =  0.030, SE = 0.026 M =  0.026, SE = 0.023 t(29) =  0.124, p = 0.451 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 3. Model specification and estimated coefficients of linear mixed effects 
models (Choice Data). Models are referred to by their labels (e.g., M1, M2) in the Methods section. 
Formulas are written in the notation of the lme4 package in R. Random effects are indicated in 
parentheses. Variable coding - response: face = 0, scene = 1; bet: face = 0, scene = 1; condition: 
competition = 0, cooperation = 1. 1A probit link function was used. 2Data from Cooperation condition 
only. 3Data from Competition condition only.  
 

  Formula Term Estimate SE p 

M11,2 response ~ % scene + bet + (bet | subj) 
intercept -8.348 0.335 < 0.001 
% scene 0.168 0.006 < 0.001 
bet 0.330 0.131 0.012 

      

M21,3 response ~ % scene + bet + (bet | subj) 
intercept -6.005 0.193 < 0.001 
% scene 0.129 0.004 < 0.001 
bet -0.466 0.110 < 0.001 

      

M31 response ~ % scene + condition * bet + 
(condition * bet | subj) 

intercept -6.774 0.220 < 0.001 
% scene 0.145 0.004 < 0.001 
condition -0.423 0.147 0.004 
bet -0.506 0.140 < 0.001 
bet * condition 0.810 0.242 0.001 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 4. Model specification and estimated coefficients of linear mixed effects 
models (Reaction Time Data). Variable coding - motcon_response: motivationally inconsistent 
responses = 0, motivationally consistent responses = 1; stimulus_uncertainty = |% scene - % face|; 1Face 
responses only. 3Scene responses only. 4Simulated data generated from z & v model.  
 

  Formula Term Estimate SE p 

M4 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.505 0.028 < 0.001 
motcon_response -0.054 0.019 0.009 
stimulus_uncertainty -0.005 0.0003 < 0.001 

      

M51 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.486 0.031 < 0.001 
motcon_response -0.067 0.021 0.004 
stimulus_uncertainty -0.006 0.000 < 0.001 

      

M62 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.483 0.031 < 0.001 
motcon_response -0.044 0.021 0.044 
stimulus_uncertainty -0.005 0.000 < 0.001 

      

M73 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.537 0.027 < 0.001 
motcon_response -0.043 0.012 0.001 
stimulus_uncertainty -0.004 0.000 < 0.001 

      

M81,4 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.543 0.029 < 0.001 
motcon_response -0.049 0.013 < 0.001 
stimulus_uncertainty -0.004 0.000 < 0.001 

      

M92,4 

log(RT) ~ motcon_response + 
stimulus_uncertainty + 

(motcon_response + 
stimulus_uncertainty | subj) 

intercept 0.531 0.030 < 0.001 
motcon_response -0.037 0.013 0.008 
stimulus_uncertainty -0.004 0.000 < 0.001 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 5. Model specification and estimated coefficients of linear mixed effects 
models (Classifier Data). Variable coding - classifier_prob: classifier probability that participants were 
viewing a scene; mot_bias: continuous measure of motivational bias in behavior; bias_group: low bias 
participants = 0; high bias participants = 1; 1Data from high bias participants only. 2Data from low bias 
participants only. 
 

  Formula Term Estimate SE p 

M10 classifier_prob ~ % scene + condition * 
bet + (condition * bet | subj) 

intercept 0.070 0.019 < 0.001 
% scene 0.009 0.000 < 0.001 
condition -0.021 0.013 0.108 
bet -0.021 0.013 0.108 
bet * condition 0.039 0.019 0.040 

      

M11 classifier_prob ~ % scene + condition * 
bet * mot_bias + (condition * bet | subj) 

intercept 0.06 0.02 0.003 
% scene 0.01 0.00 < 0.001 
condition 0.00 0.02 0.951 
bet 0.00 0.02 0.915 
mot_bias 0.01 0.01 0.158 
bet * condition -0.01 0.02 0.756 
mot_bias * condition -0.03 0.01 0.034 
bet * mot_bias -0.02 0.01 0.041 
condition * bet * 
mot_bias 0.06 0.02 0.001 

      

M121 classifier_prob ~ % scene + condition * 
bet + (condition * bet | subj) 

intercept 0.069 0.027 0.012 
% scene 0.009 0.000 < 0.001 
condition -0.034 0.019 0.070 
bet -0.032 0.019 0.084 
bet * condition 0.079 0.027 0.003 

      

M132 classifier_prob ~ % scene + condition * 
bet + (condition * bet | subj) 

intercept 0.072 0.027 0.009 
% scene 0.009 0.000 < 0.001 
condition -0.009 0.019 0.649 
bet -0.010 0.019 0.587 
bet * condition -0.002 0.026 0.953 

      

M14 

 
classifier_prob ~ % scene + condition * 
bet * bias_group + (condition * bet | 
subj) 

intercept 0.064 0.021 0.003 
% scene 0.009 0.0003 < 0.001 
condition -0.009  0.019 0.649 
bet -0.010 0.019 0.588 
bias_group 0.012 0.019 0.523 
bet * condition -0.002 0.027 0.953 
condition * 
bias_group -0.025 0.028 0.337 

bet * bias_group -0.022 0.027 0.402 
condition * bet * 
bias_group 0.080 0.037 0.033 
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