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People tend to think of their perception as a veridical  
representation of the external world, but this view has long 
been challenged by psychological research1,2. Instead, people  

often report percepts that they are motivated to perceive,  
a phenomenon we term motivated perception. In one classic  
example in the visual domain, Dartmouth and Princeton students 
watched the same football game. Fans of each team subsequently 
reported seeing the other team commit more fouls3. Likewise,  
participants presented with ambiguous line drawings were  
more likely to report seeing the interpretation associated with  
desirable outcomes4.

One interpretation of these findings is that motivational factors, 
such as desires and wants, exert top-down influence over perceptual 
processing, such that people become biased towards seeing what 
they want to see5. We refer to the bias in perceptual processing as 
a perceptual bias. Alternatively, these effects could instead reflect a 
response bias: a bias not in what participants see, but merely in what 
they report seeing6,7. Although these two interpretations appear 
at odds with each other, they are not mutually exclusive; motiva-
tion could simultaneously bias both perception and responses. 
Computational models offer a promising analytical approach to 
dissociate these two sources of bias and identify their independent 
contributions to perceptual judgements.

Drift diffusion models (DDMs) assume that perceptual judge-
ments arise from the accumulation of noisy sensory evidence 
towards one of two decision thresholds8,9. When the level of evi-
dence exceeds the threshold associated with a particular percept, 
the corresponding response is made. Within this framework, a 
response bias can be modelled as a bias in the starting point of evi-
dence accumulation. This reduces the amount of evidence needed 
to make a response, but assumes no effect on perceptual processing. 
Conversely, a perceptual bias can be modelled as a bias in the rate 
of evidence accumulation. This in turn reflects sensory information 
accumulating faster for one percept than for another, implying that 
perceptual processes are biased towards seeing that percept. The 
extent to which each bias influences behaviour can then be esti-
mated from empirical data.

Neuroimaging offers a second, complementary approach for dis-
sociating response from perceptual biases. The neural mechanisms 
underlying motivational effects on perceptual judgements are not 
well understood, but separate literatures on the neuroscience of 
motivation and perception suggest distinct neural processes that 
could be related to different components of bias. In particular, both 
functional magnetic resonance imaging (fMRI) and electrophysiol-
ogy studies have identified the nucleus accumbens (NAcc) as a key 
structure in mediating motivational processes10,11. One putative role 
of the NAcc is that it biases response selection in favour of actions 
associated with higher reward12–14. Notably, greater NAcc activ-
ity precedes approach behaviour to reward-predicting stimuli15, 
whereas inactivating the NAcc reduces the preference for responses 
associated with larger rewards16. Thus, we predict that the NAcc 
would play a role in response biases by increasing the readiness to 
make motivationally desirable judgements.

Conversely, previous work suggests that perceptual judge-
ments are determined by comparing the activity of neurons selec-
tive to different perceptual features17,18. For example, monkeys in a 
direction-of-motion task were more likely to categorize a cloud of 
dots as moving upward when activity was higher in sensory neu-
rons preferring upward motion than in sensory neurons preferring 
downward motion19. Similarly, Heekeren and colleagues demon-
strated in humans that perceptual judgements on a face/scene cat-
egorization task were computed by comparing activity in areas in 
the ventral temporal cortex selective to each category20. Motivation 
could potentially bias this comparison process by driving attention 
towards the features associated with a motivationally desirable per-
cept21. This enhances the neural response to those features, thus giv-
ing rise to a perceptual bias.

The goal of the present study was twofold: (1) to decompose 
motivational influences on perceptual judgements into a response 
bias and a perceptual bias, and (2) to examine the neurocomputa-
tional mechanisms underlying motivational biases on perceptual 
judgements. To do this, we presented human participants visually 
ambiguous images created by morphing a face image and a scene 
image together, and rewarded them for correctly categorizing 
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whether the face or scene was of higher intensity. We manipulated 
participants’ motivation by instructing them on each trial that they 
would win or lose extra money if the upcoming stimulus was of a 
particular category. Crucially, participants would gain or lose this 
additional money based only on the actual category of the stimulus, 
not what they reported seeing. As such, even though participants 
were motivated to see one category over the other, they would earn 
the most money on the task if they reported the stimulus category 
accurately.

We estimated the magnitude of response and perceptual biases 
exhibited by our participants by fitting a DDM to choice and reac-
tion time data. Using fMRI, we searched for distinct neural pro-
cesses associated with each bias. Furthermore, as the perception of 
faces and scenes is associated with distinct patterns of activity in the 
ventral occipito-temporal cortex20,22,23, we used multivoxel pattern 
analysis to measure the level of face-selective and scene-selective 
activity as a correlate of perception. If the motivation to see one 
category increases the level of neural activity selective for that cat-
egory, it would provide additional evidence that motivation modu-
lates perceptual processing. By combining the neural measures with 
computational modelling, our approach provides a mechanistic 
account of motivational influences on perceptual judgements.

results
Thirty participants were scanned using fMRI while they performed 
a categorization task with visually ambiguous images comprising a 
mixture of a face and a scene (Fig. 1a). For each image, participants 
were rewarded for correctly indicating which category was of higher 
intensity (that is, ‘more face’ or ‘more scene’). To motivate partici-
pants to see one category over another, we informed them that they 
would be performing the task with a teammate or an opponent. This 
other ‘player’ would bet on whether the upcoming image would be 
an image with more face or more scene. Participants were told that 
neither the teammate nor opponent had seen the upcoming image 
and their bets provided no informational value. Participants won a 
monetary bonus if the teammate’s bet was correct, and lost money if 
the teammate’s bet was wrong (cooperation condition). By contrast, 
participants lost money if the opponent’s bet was correct, and won 
a bonus if the opponent’s bet was wrong (competition condition). 
The competition condition allowed us to assess the effect of motiva-
tion above and beyond that of semantic priming due to having seen 
the words ‘face’ and ‘scene’. Crucially, the outcome of the teammate’s 
and opponent’s bets were determined by the objective face/scene 
proportion of the presented image, and not by participants’ subjec-
tive categorizations. To earn the most money, participants should 
ignore the bets and make their categorizations accurately (Fig. 1b). 
Additional details on participants’ demographics and the experi-
mental task are reported in the Methods section: see ‘Participants’ 
and ‘Experimental task’, respectively.

Motivation biases visual categorization. For each condition, we 
estimated the psychometric function describing the relationship 
between participants’ categorizations and the relative proportions 
of face and scene in an image. Not surprisingly, as the propor-
tion of scene in an image increases, participants were more likely 
to categorize the image as having more scene (generalized linear 
mixed-effects model (GLME): z = 16.9, P < 0.001, b = 2.19, 95% 
CI = 1.93–2.44).

To examine the effect of motivation, we estimated separate  
psychometric functions depending on the teammate’s or oppo-
nent’s bet (Fig. 2a). In the cooperation condition, participants  
were more likely to report seeing more scene when the teammate 
bet on scene than when the teammate bet on face (GLME: z = 2.52, 
P = 0.012, b = 0.33, 95% CI = 0.07–0.59); that is, participants were 
more likely to report seeing the category that the bet motivated 
them to see.

The bias in participants’ perceptual judgements could also be 
due to semantic priming. For example, when the teammate bet that 
the upcoming image would have more face, participants might be 
more likely to report seeing more face because they were semanti-
cally primed by having just seen the word ‘face’, and not because 
they were motivated to see more face. The competition condition 
allows us to directly test this competing account.

In the competition condition, participants were motivated to 
see the category that was inconsistent with the opponent’s bet. For 
example, if the opponent bet that the upcoming image would have 
more scene, participants would be motivated to see more face. If 
the bias in participants’ judgements resulted from semantic prim-
ing, participants would instead be more likely to report seeing the 
category consistent with the opponent’s bet. Consistent with a moti-
vational account, participants were less likely to categorize an image 
as having more scene when the opponent bet scene than when the 
opponent bet face (GLME: z = −4.11, P = 0.012, b = −0.47, 95% 
CI = −0.69 to −0.24). These results also highlight the flexible nature 
of the motivational bias, as participants were able to remap the rela-
tionship between the word presented to them and the percept they 
were motivated to see based on the experimental context.

To quantify the magnitude of motivational bias across the  
two conditions, we computed the condition × bet interaction on 
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Fig. 1 | experimental design. a, Participants were presented with composite 
face–scene images. In the cooperation condition, a teammate first makes 
a bet on whether the face or scene will be of higher intensity (that is, more 
face or more scene). Participants are then presented with the composite 
image and have to categorize whether it comprises mostly face or mostly 
scene. They then rated how confident they were in their categorization.  
In the competition condition, an opponent makes the bet instead. Face  
images were adapted with permission from ref. 55, Springer US; images 
licensed by CC BY 4.0. b, Payoff structure. Participants won an extra 40 cents  
if the teammate’s bet was correct, but lost 40 cents if the teammate’s 
bet was wrong. Conversely, they lost 40 cents if the opponent’s bet was 
correct, but won 40 cents if the opponent’s bet was wrong. Participants 
earned 10 cents for each correct categorization. As the outcome of the bets 
was determined by the objective face-to-scene ratio of the presented image 
and not by participants’ subjective categorizations, the reward maximizing 
strategy was to ignore the bets and perform the categorizations accurately.
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participants’ categorizations. This interaction was significant (GLME: 
z = 3.35, P < 0.001, b = 0.81, 95% CI = 0.34–1.28), such that par-
ticipants were more likely to make categorizations consistent with 
the teammate’s bet and inconsistent with the opponent’s bet. Taken 
together, these results indicate that participants’ categorizations 
were biased by what they were motivated to see.

We estimated each participant’s motivational bias as the individ-
ual effect of the condition × bet interaction. Although the majority 
of participants exhibited motivational bias, the degree of bias var-
ied across individuals (Fig. 2b). Participants who exhibited stronger 
motivational bias made fewer correct categorizations, indicating 
that the motivational bias impaired performance on the task and led 
to decreased earnings (Pearson’s r = −0.49, P = 0.006; robust regres-
sion: F(1,28) = 10.5, P = 0.010, b = −0.31, 95% CI = −0.49 to −0.12;  
Fig. 2c). Additional analyses suggest that the performance impair-
ment was not due to general differences in attention or perceptual 
sensitivity, but rather because some participants were more affected 
by the motivation manipulation than others (Supplementary Notes 1  
and 2 and Supplementary Fig. 1). All behavioural findings were rep-
licated in a separate group of 28 participants who performed the 
task without undergoing fMRI (Supplementary Fig. 2).

Motivation biases both starting point and drift rate. Having estab-
lished that participants’ categorizations were biased by what they 
wanted to see, we proceeded to examine how motivation biased the 
decision process. To this end, we fit a DDM to participants’ choice 
and reaction time data. The DDM is a model of the cognitive pro-
cesses involved in two-choice decisions9, and assumes that choice 
results from the accumulation of noisy sensory evidence towards one 
of two decision thresholds. The starting point of the accumulation  

process is determined by a free parameter, z, and the decision 
threshold is determined by a free parameter, a. The rate of evidence 
accumulation is determined by the drift rate, v, which depends 
on the sensory information on each trial. In the case of our task, 
an image with a high scene proportion would be associated with 
a highly positive v, whereas an image with a high face proportion 
would be associated with a highly negative v. When the accumula-
tion process reaches one of the two thresholds (the top threshold 
for scene and the bottom threshold for face), a response is initiated.

From a DDM perspective, our participants’ motivational bias 
could reflect either or both of two mechanisms (Fig. 3a). First, a 
shift in the starting point, z, could result in an a priori bias to make 
motivationally consistent judgements. In particular, shifting the 
starting point towards the decision threshold of the motivationally 
consistent category reduces the amount of evidence needed to make 
the motivationally consistent response, thus creating a response 
bias. Second, a bias in the drift rate, v, could favour evidence accu-
mulation in favour of the motivationally consistent category. This 
results in sensory evidence accumulating faster for the motivation-
ally consistent category, thus creating a perceptual bias. Both biases 
increase the proportion of motivationally consistent judgements, 
but have distinguishable effects on the shape of reaction time distri-
butions9,24 (Supplementary Fig. 3).

To examine whether either or both of these processes explained 
the bias observed in our task, we fit three different DDMs to par-
ticipants’ data25 (see ‘DDM’ in Methods): (1) a model in which 
motivation biases the starting point (z model), (2) a model in which 
motivation biases the drift rate (v model), (3) and a model in which 
motivation biases both the starting point and drift rate (z & v model). 
For comparison, we also fit an unbiased model in which neither 
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Fig. 2 | motivation biases visual categorization. All panels include data from 30 participants. a, Participants were more likely to categorize the ambiguous 
image as what they wanted to see. In the cooperation condition, participants’ psychometric function was shifted left when the teammate bet on more 
scene relative to when the teammate bet on more face, indicating that less scene evidence was needed to categorize an image as having more scene. In 
the competition condition, participants’ psychometric function was shifted right when the opponent bet on more scene relative to when the opponent bet 
on more face, indicating that more scene evidence was needed to categorize an image as having more scene. Statistical significance was assessed using 
GLME (see ‘Psychometric functions’ in Methods). Error bars indicate s.e.m. b, The magnitude of bias in each participant, defined as the individual effect 
of the bet × condition interaction. Higher values indicate stronger bias. c, Participants with greater motivational bias performed worse on the task and 
received lower earnings. See Supplementary Fig. 2 for replication with an independent group of participants.
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the starting point nor the drift rate was biased by motivation (null 
model). As the pattern of reaction times was comparable across the 
cooperation and competition conditions (Supplementary Fig. 4), all 
models were fit to data pooled over both conditions to take advan-
tage of the larger number of trials for more reliable estimates.

We compared the model fits based on the deviance informa-
tion criterion26 (DIC; a common metric of model comparison for 
hierarchical models that penalizes for model complexity, with lower 
values indicating better fit). To verify that DIC is an accurate met-
ric for model comparison, we fit the models to simulated data and 
demonstrated that DIC reliably identifies the true model used to 
generate each dataset (Supplementary Note 3 and Supplementary 
Fig. 5). When the models were fit to experimental data, DIC iden-
tified the z & v model as the model that provided the best fit to 

participants’ data (DIC: z & v: 12,535; z: 12,619; v: 12,546, null: 
12,735; Fig. 3b), suggesting that motivation biased both the start-
ing point and the drift rate of evidence accumulation. The best-fit 
values and summary statistics of all model parameters are reported 
in Supplementary Table 1.

Next, we examined how the starting point and the drift rate were 
affected by motivation. We extracted the posterior distribution 
of the starting point bias estimated by the z & v model (Fig. 3c).  
Positive values indicate a positive motivational bias, such that the 
starting point is biased towards the scene threshold when partici-
pants were motivated to see more scene, and biased towards the 
face threshold when participants were motivated to see more face.  
If more than 95% of the posterior distribution were to be greater 
than 0, we consider it to be strong evidence that the estimate was 
positive; 96.8% of the posterior distribution of the starting point bias 
was greater than 0 (P(zbias > 0) = 0.968, mean = 0.051, 95% credible 
interval = −0.003 to 0.105), indicating strong evidence that motiva-
tion biased the starting point of evidence accumulation towards the 
threshold of the motivationally consistent category.

Similarly, there was strong evidence that the bias in the drift rate 
was greater than 0 (P(vbias > 0 = 0.991, mean = 0.092, 95% credible 
interval = 0.015–0.168; Fig. 3d), indicating that evidence accumula-
tion was biased towards the face category when participants were 
motivated to see more face, and towards the scene category when 
participants were motivated to see more scene. Taken together, the 
modelling results suggest that motivation biased perceptual judge-
ments by increasing the predisposition to respond in a motivation-
ally consistent manner, as well as by biasing sensory processing in 
favour of the motivationally consistent category.

DDM accounts for asymmetries in reaction time. Participants 
were faster at making categorizations that were consistent with their 
motivations (linear mixed-effects model (LME): two-tailed, one-
sampled t(28) = −2.80, P = 0.009, b = −0.05, 95% CI = −0.98 to −0.02). 
In particular, participants were faster to categorize an image as a face 
when motivated to see more face (LME: two-tailed, one-sampled 
t(28) = −3.12, P = 0.004, b = -0.07, 95% CI = −0.11 to −0.02), and faster 
to categorize an image as a scene when motivated to see more scene 
(LME: two-tailed, one-sampled t(28) = −2.11, P = 0.04, b = −0.04, 95% 
CI = −0.09 to −0.01; Fig. 4a). We examined whether the z & v model 
would account for this feature of the data. We simulated choice and 
reaction time data using the z & v model (see ‘Model simulations’ in 
Methods), and showed that the simulated data reproduced the pat-
tern of reaction times where motivationally consistent responses were 
faster than motivationally inconsistent responses (LME: two-tailed, 
one-sampled t(28) = −3.65, P = 0.001, b = −0.04, 95% CI = −0.06 to 
−0.02; Fig. 4b). This was true for both face responses (LME: two-
tailed, one-sampled t(28) = −3.79, P < 0.001, b = −0.05, 95% CI = −0.07 
to −0.02) and scene responses (LME: two-tailed, one-sampled 
t(29) = −2.86, P = 0.007, b = −0.03, 95% CI = −0.06 to −0.01). The 
model simulations also predict a non-monotonic relationship between 
mean reaction time and percentage scene, with a turning point at 
50% scene. This pattern was not observed in the data (Fig. 4a,b).  
At present, it is unclear whether this reflects a deviation from the 
model or an unreliable estimate from the data. As our experiment 
did not sufficiently and evenly sample the space of percentage scene 
to accurately estimate the relationship between percentage scene and 
mean reaction times, we do not explore this further.

We compared the model simulations from the z & v model 
to that of the other models, and show that the z & v model pro-
vides a closer match to the empirical data than the other models 
(Supplementary Fig. 6 and Supplementary Note 4). Finally, we show 
that the model simulations from the z & v model reproduced each 
participant’s choice and reaction time distributions (Supplementary 
Fig. 7). Altogether, these results indicate that model fits of the z & v 
model align well with participants’ data.
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that it provides the best fit to participants’ data. See Supplementary Table 1 
for best-fit values and summary statistics of all model parameters.  
c, Posterior distribution of the starting point bias (zbias). The dashed line 
indicates 0 (no bias). More than 95% of the distribution was greater 
than 0, indicating strong evidence of a starting point bias. d, Posterior 
distribution of the drift bias (vbias). More than 95% of the distribution was 
greater than 0, indicating strong evidence of a drift bias.
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Motivationally consistent categorizations are associated with 
activity in the salience network and dorsal attention network. 
To identify the brain areas associated with motivational biases in  
perceptual judgements, we first performed a whole-brain contrast 
to identify voxels that responded differently on trials on which  
participants categorized an image as the category that they were 
motivated to see (motivation consistent trials) than on trials on 
which they categorized an image as the category that they were 
motivated to not see (motivation inconsistent trials). This con-
trast revealed activations in two networks of brain regions: (1) the 
salience network, which includes the NAcc, the insula, the dorsal 
anterior cingulate (dACC), and (2) the dorsal attention network, 
including the intraparietal sulcus (IPS) and frontal eye fields  
(FEFs) (Fig. 5).

NAcc activation is associated with response bias. The NAcc is 
thought to be crucial in mediating the effects of motivation on 
actions and has been previously implicated in biasing responses 
towards actions associated with larger rewards12–14. Thus, we pre-
dicted that the NAcc would be associated with the response bias 
when making motivated perceptual judgements. We defined a 
NAcc region of interest (ROI) using the Harvard–Oxford Cortical 
Structural Atlas, and computed the NAcc response of each partici-
pant as the average z-statistic of the motivation consistent > moti-
vation inconsistent contrast in the ROI (Fig. 5). This value reflects 
the extent to which the NAcc of a particular participant was more 
active when they made motivationally consistent categorizations 
than when they made motivationally inconsistent categorizations. 

We then examined whether the NAcc response would be associ-
ated with either participants’ response bias, their perceptual bias or  
both biases.

For each participant, we computed response bias as the posterior 
mean estimate of that participant’s starting point bias (zbias; Fig. 3c), 
and perceptual bias as the posterior mean estimate of their drift bias 
(vbias; Fig. 3d). Estimates of the two biases were not significantly cor-
related (Pearson r = 0.290, P = 0.120; robust regression: F(1,28) = 1.58, 
P = 0.219, b = 0.58, 95% CI = −0.33 to 1.49). When both biases were 
entered as predictors in the same linear regression model, partici-
pants’ response bias was associated with the NAcc response (linear 
regression: two-tailed, one-sampled t(27) = 2.71, P = 0.012, βz = 0.47, 
95% CI = 0.12–0.83), but their perceptual bias was not (linear 
regression: two-tailed, one-sampled t(27) = 0.37, P = 0.711, βv = 0.07, 
95% CI = −0.29 to 0.42; Fig. 6a).

NAcc activity can lead to a response bias by increasing the 
readiness to make a particular response. This account would pre-
dict that the increase in NAcc activity was preparatory in nature 
and would precede the onset of the image. To test this hypothesis, 
we examined the average activity in the NAcc as a trial unfolded, 
separately for trials on which participants made motivationally con-
sistent categorizations (motivation consistent trials) and for trials 
on which participants made motivationally inconsistent categori-
zations (motivation inconsistent trials). Consistent with a prepara-
tory account, NAcc activity was significantly higher on motivation 
consistent trials prior to the image appearing on the screen and 
remained significantly higher until image offset (Fig. 6b,c and 
Supplementary Table 2).

Notably, the results also provide evidence against the alternative 
account that NAcc activation reflects the reward participants’ expe-
rience on seeing the category that they were motivated to see, as 
the increase in NAcc activity occurred before participants saw the 
image. Instead, the results suggest that NAcc activity predisposes 
participants to categorize an image as the category that they were 
motivated to see, and sustained NAcc activation increases the likeli-
hood of making motivationally consistent responses.

One implication of these results is that trial-by-trial NAcc activity  
might be related to trial-by-trial variability in the starting point, 
such that the starting point is more biased towards the motiva-
tionally consistent category when NAcc activity is higher. As we 
did not explicitly model the trial-by-trial variability in the model 
parameters, we cannot test this hypothesis in the current study. We 
opted not to model the trial-by-trial variability in model parameters 
because doing so can compromise the reliability and accuracy of the 
estimates of the individual parameters, especially when the number 
of trials per participant is small27. Nevertheless, we believe that this 
is an interesting question that warrants further investigation in a 
future study with a larger dataset.

Face-selective and scene-selective neural activity is associated 
with perceptual bias. Face-selective and scene-selective activ-
ity in the ventral occipito-temporal cortex provides a proxy mea-
sure of participants’ perception. Thus, we examined whether  
motivation affected perception by assessing whether the motivation 
to see faces or scenes modulated this activity. We applied multivari-
ate pattern analysis to the blood-oxygen-level-dependent (BOLD) 
data to quantify the level of face-selective and scene-selective 
activity on each trial. Specifically, we trained a logistic regression 
classifier to estimate the probability that participants were seeing 
a scene rather than a face based on the pattern of activity in the 
ventral occipito-temporal cortex (see ‘Multivoxel pattern analyses’ 
in Methods).

As the proportion of scene in an image increased, the classifier 
predicted that the participants were seeing a scene with higher prob-
ability, indicating that the classifier tracked the amount of scene in 
the presented image (LME: two-tailed, one-sampled t(4,756) = 25.8, 
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P < 0.001, b = 0.12, 95% CI = 0.11–0.13). There was a significant 
bet × condition interaction on classifier probability, such that  
the classifier was more likely to predict that participants were  
seeing a scene when they were motivated to see a scene than 
when they were motivated to see a face (LME: two-tailed, one-
sampled t(4,756) = 2.05, P = 0.040, b = 0.038, 95% CI = 0.002–0.075; 
Supplementary Fig. 8), indicating that the motivation to see a cat-
egory increased the level of sensory evidence for that category in 
the visual pathway. In other words, motivation not only biased par-
ticipants’ categorization of an image but it also biased their neural 
representation of the image.

Next, we examined how the bias in category-selective activity 
relates to the bias in participants’ categorical judgements (that is, 
the motivational effect on a participant’s psychometric function). 
There was a significant triple interaction between behavioural bias, 
condition and bet on the level of category-selective activity (LME: 
two-tailed, one-sampled t(4,752) = 3.37, P = 0.001, b = 0.06, 95% 
CI = 0.02–0.09). To better interpret the directionality of the interac-
tion, we performed a median split to divide participants into those 
with higher behavioural bias and those with lower behavioural bias. 
Motivation biased the classifier probability of high-bias participants 
(LME: two-tailed, one-sampled t(2,378) = 2.96, P = 0.003, b = 0.07, 95% 
CI = 0.03–0.13), but not of low-bias participants (LME: two-tailed, 
one-sampled t(2,373) = −0.06, P = 0.953, b = −0.002, 95% CI = −0.053 

to 0.050; interaction by group: two-tailed, one-sampled t(4,752) = 2.14, 
P = 0.033, b = 0.08, 95% CI = 0.02–0.14; Fig. 7a).

We then extracted each participant’s individual effect of the 
bet × condition interaction on classifier probability to obtain a mea-
sure of the extent to which motivation biased face-selective and 
scene-selective activity in the participant. The bias in participant’s 
face-selective and scene-selective activity correlated strongly with 
their behavioural bias (Pearson r = 0.69, P < 0.001; robust regres-
sion: F(1,28) = 15.1, P < 0.001, b = 6.94, 95% CI = 3.73–10.15; Fig. 7b), 
indicating that participants who were more biased in their categori-
zations were also more biased in their neural representation of the 
presented image.

We then sought to relate the bias in face-selective and scene-
selective activity to response and perceptual biases more spe-
cifically. When model estimates of the two biases were entered 
as predictors in the same linear regression model, participants’ 
perceptual bias was associated with the bias in face-selective and 
scene-selective neural activity (linear regression: two-tailed, one-
sampled t(27) = 3.12, P = 0.004, βv = 0.49, 95% CI = 0.17–0.82), but 
their response bias was not (linear regression: two-tailed, one-sam-
pled t(27) = 1.63, P = 0.115, βz = 0.26, 95% CI = −0.07 to 0.58; Fig. 7c).

Together with our earlier analyses on NAcc activity, these results 
suggest distinct neural contributions to participants’ biased catego-
rizations. While the NAcc was associated with a response bias, the 
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modulation of face-selective and scene-selective activity in visual 
areas was associated with a perceptual bias. By combining computa-
tional modelling with neuroimaging, we identified two dissociable 
neurocomputational components underlying motivational biases in 
perceptual judgements.

Discussion
This study combines computational modelling of behaviour and 
fMRI to examine whether and why people exhibit biases towards 
seeing what they want to see. We developed a behavioural paradigm 
that allowed us to find that people indeed make biased perceptual 
judgements, more often labelling ambiguous images as correspond-
ing to a reward-associated category. This is true even though par-
ticipants were incentivized to accurately report their perceptual 
experience, and thus earned less money in the experiment when 
making biased judgements. Evidence from computational model-
ling suggests that motivational effects on perceptual judgements 
could be attributed to both a response bias and a bias in perceptual 
processing. While the response bias was associated with anticipa-
tory activity in the NAcc, the bias in perceptual processing was 
associated with the modulation of category-selective neural activity 
in the ventral visual stream. These results provide converging evi-
dence for two distinct contributions to motivational influences on 
perceptual judgements and shed light on the neurocomputational 
mechanisms underlying each bias.

The claim that perceptual processes are influenced by motivational 
factors can be traced back to the ‘New Look’ movement in psychol-
ogy, which argued that the perception of external stimuli is subject 
to the constant influence of a perceiver’s internal goals and states28,29. 
Recent evidence supporting this view includes studies demonstrating 
that perceptually ambiguous stimuli are more likely to be seen as the 
percept associated with favourable outcomes4,30, desirable objects are 
judged nearer than undesirable objects31, and desirable food items are 
judged as larger by dieters than non-dieters32. Whether these results 
reflect a bias in subjective reports or a bias in perception remains a 
topic of intense debate (see the open peer commentary for ref. 7). In 
particular, as these studies rely primarily on subjective reports, and 
participants often have an incentive to report seeing what they want 
to see, there is reason to suspect that subjective reports might not 
reflect one’s underlying perceptual experience.

Our work builds on earlier efforts to understand motivated per-
ception using computational models. An earlier study33 similarly 
decomposed motivational biases into response and perceptual  
components by mapping them respectively onto biases in the  
starting point and drift rate of a DDM. However, there are non-per-
ceptual explanations for a bias in drift rate. For example, a response 
bias that becomes stronger over the course of a trial (that is, a 
dynamic response bias) could also result in a biased drift rate34,35.  
As such, a bias in the drift rate alone is insufficient evidence of a bias 
in perception.

1.00

0.75

0.50

0.25

C
la

ss
ifi

er
 p

ro
ba

bi
lit

y 
(s

ce
ne

)
M

ot
iv

at
io

na
l b

ia
s

E
st

im
at

e

Neural bias

Neural bias ~ βz zbias + βv vbias + β0 + ε

C
la

ss
ifi

er
 p

ro
ba

bi
lit

y 
(s

ce
ne

)

0

1.00

0.75

0.50

0.25

0
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Cooperation Competition Cooperation Competition

Bet face

Bet × condition interaction
P = 0.003

P < 0.001
r = 0.69

4

2

0

–0.25
–0.2 0 0.2

0

0.25

0.50

0.75

Bet × condition interaction
P = 0.953

Bet scene

Scene (%) Scene (%)

βz βv

**

a

b c

Fig. 7 | motivation biases face-selective and scene-selective neural activity during visual categorization. a, Classifier probability that the presented 
image was a scene rather than a face, based on the BOLD response in the ventral visual stream, separately for participants with high (left) and low (right) 
behavioural bias. For high-bias participants, the scene probability was higher when participants were motivated to see a scene (that is, a teammate bets 
scene or an opponent bets face) than when participants were motivated to see a face (that is, a teammate bets face or an opponent bets scene). There was 
no effect of motivation in low-bias participants. Error bars denote between-subjects s.e.m. b, The effect of motivation on classifier probability (neural bias) 
was correlated with the extent to which a participant was biased in their categorizations (motivational bias). c, Regression coefficients of the response bias 
(βz) and perceptual bias (βv) when both were entered into the same model to predict participants’ neural bias. Only the perceptual bias was significantly 
associated with participants’ neural bias. Two-tailed, one-sampled t(2,378) = 2.96, **P = 0.003, b = 0.07, 95% CI = 0.03–0.13. Error bars denote s.e.

Nature HumaN BeHaviour | VOL 3 | SEPTEMBER 2019 | 962–973 | www.nature.com/nathumbehav968

http://www.nature.com/nathumbehav


ArticlesNatURE HUMaN BEHavIOUR

A strength of the current work is that, in addition to modelling the 
behavioural data using a DDM, we used functional neuroimaging to 
measure the level of sensory evidence in visual areas of the brain. 
We found that motivation enhances the sensory evidence of the 
motivationally consistent category in the ventral visual stream, and 
the degree of sensory enhancement was associated with the bias in 
drift rate but not with the bias in starting point. In relating the neural  
data to the modelling results, we achieve two complementary goals: 
(1) the neural results provide convergent validity of our interpreta-
tion of the bias in drift rate as a perceptual bias, and (2) the model-
ling results provide a computational description of how the bias in  
sensory activity contributes to biases in perceptual judgements.

Perceptual judgements are thought to be computed by comparing 
the activity of neurons selective to different perceptual features19,20. 
Within this framework, the nervous system ‘reads out’ the activity 
of face-selective and scene-selective neurons as sensory evidence for 
faces and scenes, respectively. A perceptual judgement can then be 
determined by comparing the activity of face-selective and scene-
selective neurons. Our results indicate that motivation biases this 
comparison by enhancing the activity of the neurons selective to the 
category that participants were motivated to see. This enhancement 
could in turn reflect the biased processing of incoming sensory 
information, with the biasing signal originating from frontoparietal 
attention regions36.

Indeed, we found that the IPS and FEFs were more active when 
participants made motivationally consistent judgements. The IPS 
and FEFs are part of the dorsal attention network associated with 
the top-down control of attention37,38. Their involvement in our 
task suggests that the bias in perceptual processing might be in part 
mediated by dynamic changes in the focus of attention39. In addi-
tion to the frontoparietal activations, the dACC and the insula were 
also more active on motivation consistent trials. The dACC and the 
insula are part of a salience network involved in the detection of 
motivationally salient stimuli40,41, and the dACC has been recently 
implicated in determining what stimulus feature to attend to in a 
perceptual decision-making task42. The increased activity in the 
salience network on motivation consistent trials might be responsi-
ble for the selection of motivationally relevant features for enhanced 
processing. However, this interpretation is speculative, and future 
studies will be needed to clarify the role of each region in biasing 
perceptual judgements.

Conversely, participants’ response bias was associated with activ-
ity in the NAcc. This is consistent with behavioural neuroscience 
work suggesting that dopaminergic projections to the NAcc biases 
animals towards responses associated with greater reward12–14,16. 
Both human neuroimaging and animal physiology studies have also 
shown that the NAcc is activated in anticipation of reward10,11. Our 
results suggest a functional role for this anticipatory activity. In par-
ticular, they suggest that the NAcc increases participants’ readiness 
to respond in a motivation consistent manner. When the motiva-
tion consistent response is aligned with task demands (for example, 
pressing a lever for reward), this preparatory response facilitates 
faster responding for reward15,43. However, when the motivationally 
consistent response conflicts with task demands, as was the case in 
our task, the preparatory response is maladaptive and impairs per-
formance on the task.

Our results add to the rich literature on perceptual decision-
making in cognitive neuroscience by dissociating motivation 
(‘wanting to see’) from optimal task performance (‘reward maximi-
zation’). Previous studies have manipulated the reward associated 
with different perceptual alternatives and found that reward biases 
responses but not perceptual processing44–47. We speculate that these 
results differ markedly from ours because our paradigm tapped into 
distinct biasing mechanisms. In these earlier studies, participants 
would earn the additional reward if they correctly categorized  
the stimulus as the rewarded category. Under this payoff scheme, 

biasing responses towards the option associated with larger reward 
would result in greater cumulative reward over the course of the 
experiment44,48. Hence, the bias in these earlier experiments prob-
ably reflects a strategic shift in responses to maximize reward on the 
task, and thus not affect sensory processing.

By contrast, in our task, the additional reward associated with 
the motivationally consistent category was independent of partic-
ipants’ responses. For example, if the teammate bet that the next 
image would have more face, participants would receive the bonus 
if the upcoming image indeed had more face, regardless of how they 
responded on the trial. In this case, a bias towards the motivationally 
consistent category would lower participants’ earnings by hurting 
their accuracy on the categorization task. Thus, the biases observed 
in our task cannot be explained by existing normative models of 
judgement and decision-making that assume organisms adjust their 
choice strategies to maximize expected reward. Instead, they high-
light a motivational component to perceptual judgements—wanting 
an outcome to be true can impinge on one’s perceptual judgement, 
even when doing so could lead to lower rewards in the long run. 
Our results suggest that this bias reflects not only a response bias 
but also a perceptual bias.

At a broader level, this work provides a novel bridge between 
social psychology and cognitive neuroscience. Using tools and ana-
lytical techniques from cognitive neuroscience, we examine the 
neurocomputational mechanisms underlying an age-old phenom-
enon of interest in social psychology. In doing so, we offer a fresh 
perspective on a classic debate. Unlike earlier work that assesses 
whether motivation biases perception, we provide a neurocomputa-
tional account of how motivation biases perception. The results also 
complement the existing literature on motivated person percep-
tion, which has focused primarily on the neural and computational 
mechanisms by which people form overly positive evaluations of 
themselves and close others49–51. Our work extends the phenome-
non beyond the domain of social attributions, and show that moti-
vated visual perception can be similarly characterized as a change 
in initial beliefs (that is, starting point) and information updating 
(that is, drift rate).

Desires and wants exert a powerful influence over how peo-
ple make sense of the world. Recent studies have examined the  
neural mechanisms underlying motivational biases across vari-
ous human reasoning and evaluative processes52, including how 
the brain learns more from positive outcomes than from negative  
outcomes53 and why people form unrealistically optimistic expecta-
tions about future events54. Here, we demonstrate that motivation 
biases human cognition as early as visual perception, and provide 
a neurocomputational account of this effect. The current work 
extends our understanding of motivational biases and provides a 
starting point to explore how motivation acts on different neural 
systems at different stages of information processing to influence 
human cognition.

methods
Participants. Thirty-three participants were recruited from the Stanford 
community and provided written, informed consent before the start of the study. 
All experimental procedures were approved by the Stanford University Institutional 
Review Board. Participants were paid between US$30 and $50 depending on their 
performance on the task. Data from 3 participants were discarded because of 
excessive head motion (>3 mm) during ≥1 scanning sessions, yielding an effective 
sample size of 30 participants (17 male, 13 female, 18–43 years of age, mean 
age = 22.3 years).

Stimuli. For each participant, seven sets (one for the practice task and six for the 
experimental task) of composite stimuli were created. Each stimulus set consists 
of 40 greyscale images, each comprising a mixture of a face image and a scene 
image in varying proportions (1 × 100% scene, 3 × 65% scene, 5 × 60% scene, 
7 × 55% scene, 8 × 50% scene, 7 × 45% scene, 5 × 40% scene, 3 × 35% scene and 
1 × 0% scene). Scene images comprised half indoor scenes and half outdoor scenes, 
whereas face images comprised half male faces and half female faces. All faces were 
frontal photographs posing a neutral expression, and were taken from the Chicago 
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Face Database55. Stimuli were presented using MATLAB software (MathWorks) 
and the Psychophysics Toolbox56.

Practice task. Participants first performed 40 practice trials in which they were 
presented with composite face/scene images (see ‘Stimuli’). Each image was 
presented for 4 s, during which participants had to judge whether the image 
contained a greater proportion of face (more face) or a greater proportion of scene 
(more scene). Participants earned 10 cents for each correct categorization. They then 
indicated how confident they were in their classification on a 1–5 scale. If they did 
not respond within 4 s, the trial timed out and they would not earn a bonus on that 
trial. After a variable inter-trial interval (ITI; 2–4 s), they moved on to the next trial. 
We collected participants’ anatomical scans while they performed the practice task.

Experimental task. The experimental task consists of four fMRI runs, each 
approximately 8-min long. Participants performed two runs of the cooperation 
condition and two runs of the competition condition (interleaved order, 
counterbalanced across participants; Fig. 1a). Each run consisted of 40 trials. In 
the cooperation condition, participants were told that they would perform a visual 
categorization task with a teammate. At the start of each trial, their teammate 
would make a bet on the image type of the upcoming image (more face or more 
scene, presented for 4 s). Participants were then presented with a composite image 
created by averaging a face image and a scene image in different proportions  
(see ‘Stimuli’). If the teammate’s bet was correct, both the teammate and the 
participant would earn 40 cents. If the teammate’s bet was wrong, both the 
teammate and the participant would lose 40 cents.

Participants then had 4 s to make a categorization on whether the image 
contained more face or more scene. Participants earned 10 cents for each correct 
categorization. They then indicated how confident they were in their classification 
on a 1–5 scale. If they did not respond within 4 s, the trial timed out and they 
would not earn a bonus on that trial (although the bet would still be implemented). 
After a variable ITI (2–4 s), they moved on to the next trial. In the competition 
condition, participants performed the task with an opponent. The trial structure 
was identical to the cooperation condition, except that if the opponent’s bet 
was correct, the opponent would earn 40 cents, whereas participants would lose 
40 cents. If the opponent’s bet was wrong, the opponent loses 40 cents, whereas 
participants would earn 40 cents. As such, participants were motivated to see the 
image type their teammate bet on and to see the image type opposite of what their 
opponent bet on. Participants were told that the teammate and the opponent would 
not be informed about their responses, and would thus not be motivated by a 
desire to appease or defy their teammate or opponent.

Crucially, the outcome of the bets was contingent on whether the image 
objectively contained more face or more scene, and was not contingent on 
participants’ subjective categorization. Hence, the reward-maximizing strategy  
was to ignore the bets and categorize the images as accurately as possible (Fig. 1b). 
Bets by both the teammate and the opponent were pseudo-randomized such that  
they were accurate on exactly 50% of the trials. As such, participants’ earnings  
in the experiment depended solely on their performance on the categorization  
task. We computed participants’ performance as the average number of  
correct categorizations.

Localizer task. To identify BOLD activation associated with viewing faces or 
scenes, we had participants perform a localizer task at the end of the experiment. 
Participants viewed 5 blocks of 15 unambiguous faces and 5 blocks of 15 
unambiguous scenes (blocks were interleaved, and the order was counterbalanced 
across participants). In the face blocks, participants were sequentially presented 
with face images and had to indicate whether each face was male or female. In the 
scene blocks, participants were sequentially presented with scene images and had 
to indicate whether each scene was indoors or outdoors. Each image was presented 
for 2 s, with a 2-s ITI. Participants took a self-timed break between blocks. The 
localizer task was split into two scans.

fMRI data acquisition and preprocessing. MRI data were collected using a 3 T 
General Electric MRI scanner. Functional images were acquired in interleaved 
order using a T2*-weighted echo planar imaging pulse sequence (46 transverse 
slices, repetition time = 2 s, echo time = 25 ms, flip angle = 77° and voxel 
size = 2.9 mm3). Anatomical images were acquired at the start of the session with 
a T1-weighted pulse sequence (repetition time = 7.2 ms, echo time = 2.8 ms, flip 
angle = 12° and voxel size = 1 mm3). Image volumes were preprocessed using 
FSL/FEAT v.5.98 (FMRIB software library, FMRIB, Oxford, UK). Preprocessing 
included motion correction, slice-timing correction, removal of low-frequency 
drifts using a temporal high-pass filter (100-ms cut-off) and spatial smoothing 
(4-mm full-width at half-maximum). For multivoxel classification analyses, we 
trained and tested our classifier in each participant’s native space. For all other 
analyses, functional volumes were first registered to participants’ anatomical image 
(using boundary-based registration) and then to a template brain in the Montreal 
Neurological Institute (MNI) space (affine transformation with 12 d.f.).

Psychometric functions. We modelled participants’ behavioural data using 
GLME, which allows for the modelling of all of the data in one step rather than 

fitting a separate model for each participant57. Three separate GLME were fit to 
participants’ data to estimate the effect of the motivation manipulation (that is, the 
‘bet’ by the teammate or opponent) on participants’ categorizations. The first two 
models (M1 and M2; see Supplementary Table 3 for full model specification) were 
fit to data from the cooperation and competition condition to estimate the effect  
of the teammate’s and opponent’s bet, respectively, while the third model (M3)  
was fit to data from both conditions to estimate the bet × condition interaction.  
All models included the percentage scene in the image as a covariate. All 
models also included random intercepts and random slopes for the effects of the 
teammate’s or opponent’s bet (scene/face) to account for random variability across 
participants. The third model also included random intercepts and slopes for the  
condition and the condition × bet interaction. To obtain a measure of individual 
participants’ motivational bias, we added the estimate of each participant’s random 
effect on the condition × bet interaction to the estimate of the corresponding 
fixed effect. This individual effect reflects the extent to which a participant’s 
categorizations were biased by the motivation manipulation. Models were estimated  
using the glmer function in the lme4 package in R58, with P values computed from  
t-tests with Satterthwaite approximation for the degrees of freedom as implemented 
in the lmerTest package59.

Reaction time analyses. We ran a series of LME to examine the effect of 
motivation on the pattern of reaction times. Reaction times were log-transformed 
before being entered into the model. We first examined whether reaction times 
were faster when making motivationally consistent responses than when making 
motivationally inconsistent responses, controlling for the absolute difference 
between percentage scene and percentage face as a measure of stimulus uncertainty 
(M4; see Supplementary Table 4 for full model specification). Next, we examined 
motivational effects on reaction times separately for trials in which participants 
responded face (M5) and those in which they responded scene (M6). For each 
group, we tested whether the reaction times differed depending on the category 
that participants were motivated to see, again controlling for stimulus uncertainty. 
To visualize these results, we plot the average reaction time for face and scene 
responses at each level of percentage scene, separately for when participants were 
motivated to see more face and when participants were motivated to see more 
scene. We then repeated the analyses with simulated reaction time data generated 
from the z & v model (M7–M9).

Robust regression analysis. We ran robust regression models to supplement 
our correlational tests. Robust regression has been shown to be less sensitive to 
outliers60. We fit three linear models by robust regression. The first model regressed 
participants’ earnings on their motivational bias (Fig. 2c), the second model 
regressed participants’ drift bias on their starting point bias, and the third model 
regressed participants’ motivational bias on their neural bias (Fig. 7b). Model fitting 
was performed using the rlm function from the ‘MASS’ package in R. Statistical 
significance of the regression coefficient was assessed by performing a robust F-test.

DDM. The DDM assumes that decisions are made by accumulating evidence over 
time until it crosses one of two decision bounds9 (Fig. 3a). The starting point and 
the rate of evidence accumulation were determined by the free parameters z and 
v, respectively. The distance between the two boundaries depended on the free 
parameter a, while time not related to decision process (for example, stimulus 
encoding or motor response) was modelled by the free parameter t.

Model parameters were estimated from participants’ categorizations and 
reaction time distributions using hierarchical Bayesian estimation as implemented 
by the HDDM toolbox25. Parameters for individual participants were assumed to 
be randomly drawn from a group-level distribution. In the fitting procedure, each 
participant’s parameters both contributed to and were constrained by the estimates 
of group-level parameters. Markov chain Monte Carlo sampling methods were 
used to estimate the joint posterior distribution of all model parameters (100,000 
samples; burn-in = 10,000 samples; thinning = 2). We estimated both group-level 
parameters as well as parameters for each individual participant, which allowed us 
to examine biases in both the entire sample and in each individual participant. To 
account for outliers generated by a process other than that assumed by the model 
(for example, lapses in attention and accidental button press), we estimated a 
mixture model in which 5% of trials were assumed to be distributed according to a 
uniform distribution.

In the z & v model, we modelled z as a function of the motivationally consistent 
category and an intercept term. The HDDM package implements z as the relative 
starting point, bound between 0 and 1, with 0.5 reflecting an unbiased starting 
point. As such, we used the inverse logit link function to restrict z to values 
between 0 and 1:

β β
=

+ − +
z 1

1 exp( ( Motivation ))z z1 0

where Motivation denotes the motivationally consistent category, and was coded as 
+1 when participants were motivated to see more scene, and −1 when participants 
were motivated to see more face. Thus, βz1 reflects the effect of motivation on the 
starting point (zbias), while βz0 denotes an intercept term.
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We modelled v as a linear combination of the category that participants were 
motivated to see, the level of percentage scene and an intercept term:

β β β= + +v Motivation %scenev v v1 2 0

where Motivation was again coded as +1 (motivated to see more scene) and −1 
(motivated to see more face). βv1 reflects the effect of motivation on the drift rate 
(vbias) and βv2 reflects the effect of percentage scene on the drift rate. We demeaned 
percentage scene before entering it into the model such that the intercept term, βv0, 
would also reflect the intrinsic drift bias. For each of the bias parameters (zbias and 
vbias), we computed the proportion of posterior samples that were greater than 0 
(Fig. 3c,d). If more than 95% of the posterior distribution were to be greater than 0, 
we consider it to be strong evidence that the estimate was positive.

To examine whether either of the biases were sufficient for explaining the data, 
we fit two additional comparison models in which only z (z model) or only v  
(v model) was biased by motivation. In the z model, βz1 was fixed at 0, and in the 
v model, βv1 was fixed to 0. As a baseline for comparison, we also fit a null model 
in which neither the starting point nor the drift rate was biased by motivation. 
We then compared the four models using DIC, which is a measure of model 
performance that appropriately penalizes for model complexity in hierarchical 
models26. To verify that DIC is an accurate metric for model comparison, we also 
ran a model recovery study to examine whether DIC correctly recovers the model 
used to generate simulated data (Supplementary Note 3)

Model convergence of all models was formally assessed using the Gelman–
Rubin ̂R statistic61, which runs multiple Markov chains to compare within-chain 
and between-chain variances. Large differences ( ̂R > 1.1) between these variances 
would signal non-convergence. In addition, we examined each trace to check that 
there were no drifts or large jumps, which would also suggest non-convergence. We 
report model convergence metrics, posterior means and 95% credible intervals of 
all parameters in Supplementary Table 1.

Model simulations. We generated 500 simulated datasets, each comprising the 
same number of participants performing the same number of trials as the real 
dataset. Each dataset was generated with parameter values sampled from the 
posterior distribution estimated by the z & v model. These datasets reflect the 
pattern of choice and reaction time data if participant’s behaviour was perfectly 
described by the model. To compare the simulations to real data, we averaged over 
the 500 simulations to obtain the average reaction time of face and scene responses 
at each level of percentage scene, separately for when participants were motivated 
to see more face and when participants were motivated to see more scene.

Given that the DDM was fitted to reaction time distributions (rather  
than the mean), we also assessed how well the model accounts for the shape of 
participants’ reaction time distributions. For each participant, we overlay the 
distribution of simulated reaction times with the true reaction time distributions, 
separately for face and scene responses. These plots serve as posterior  
predictive checks to assess how well the model aligns with participants’ data 
(Supplementary Fig. 7).

GLM. We implemented a linear model (GLM 1) to contrast BOLD activity 
on motivation consistent trials and that on motivation inconsistent trials. A 
motivation consistent trial was defined as a trial on which participants categorized 
an image as the category they were motivated to see. Thus, this contrast would 
identify voxels in the brain that were significantly more active when participants 
reported seeing what they wanted to see, versus what they did not want to see. 
Stimulus onset, the objective percentage scene, reaction time and head movement 
parameters were included as nuisance regressors. With the exception of head 
movement parameters, all regressors were convolved with a haemodynamic 
response function. The GLM was estimated throughout the whole brain  
using FSL/FEAT v.5.98, which is available as part of the FMRIB software library. 
Correction for multiple comparisons was performed using threshold-free cluster 
enhancement with an alpha level of 0.05, as implemented by the randomize  
tool in FSL62.

We implemented a second linear model (GLM 2) in which the onset of each 
trial was modelled as a separate regressor. This model allowed us to estimate a 
separate statistical map for each trial (that is, single-trial activation patterns). We 
then used these maps as inputs to the multivoxel pattern analyses (see below). 
As was the case in GLM 1, reaction time and head movement parameters were 
included as nuisance regressors.

NAcc ROI analyses. We defined an independent NAcc ROI using the Harvard–
Oxford subcortical structural atlas (available for download at https://neurovault.
org/collections/EAAXGDRJ/). For each participant, we extracted the average  
z-statistic of the motivation consistent > motivation inconsistent contrast (GLM 1) 
within the NAcc ROI. This average z-statistic reflects the extent to which an ROI is 
more reliably active on motivation consistent trials than on motivation inconsistent 
trials for that participant, and was taken as the participant’s NAcc response. The 
NAcc response was then regressed against estimates of starting point and drift bias 
estimated by the z & v model (see ‘Relating model parameters to behaviour and 
neural measures’).

To examine how the NAcc response unfolded across a trial, we extracted 
and z-scored the mean time course in the NAcc ROI from each run. Each time 
course was shifted by two repetition times (4 s) to correct for haemodynamic lag. 
We extracted the data from 8 s before stimulus onset to 8 s after stimulus onset 
to obtain the time course of a single trial, and computed the average time course 
of activity separately for motivation consistent trials and motivation inconsistent 
trials. At each time point, we assessed whether activity was higher on motivation 
consistent trials than on motivation inconsistent trials using a paired sample t-test.

Multivoxel pattern analyses. Multivoxel pattern analyses were performed using 
tools available as part of the nilearn Python module63. An L1-regularized logistic 
regression model (C = 1) was trained on BOLD data from the localizer task to classify 
the image category that participants were seeing on each localizer trial. Notably, the 
localizer task was unrelated to face versus house discrimination (see ‘Localizer task’). 
Hence, the category-selective patterns identified by the classifier were specific to 
seeing faces or scenes, and not confounded by response-related information.

Analysis was restricted to voxels in a ventral visual stream mask consisting 
of the bilateral occipital lobe and ventral temporal cortex. The ventral occipito-
temporal regions of the brain are thought to be important in perceiving object 
categories such as faces and scenes22. The mask was created in MNI space using 
anatomical masks defined by the Harvard–Oxford Cortical Structural Atlas. The 
mask was then transformed into each participant’s native space using FSL’s FLIRT 
implementation, and classification was performed in participants’ native space.

The trained model was then applied to the single-trial activation patterns in the 
experimental task (GLM 2). On each trial, the classifier returned the probability 
that the participant was seeing a scene rather than a face based on activity in 
the ventral visual stream mask. We then modelled classifier probability on each 
trial using a LME with the percentage scene of an image, the task condition 
(cooperation/competition), the teammate’s or opponent’s bet (face/scene) and 
the interaction between condition and bet as predictor variables (M10; see 
Supplementary Table 5 for full model specification). The models included random 
intercepts and random slopes for each of the predictor variables to account for the 
random variability across participants. We computed each participant’s individual 
effect on the condition × bet interaction by adding the estimate of a participant’s 
random effect to the estimate of the fixed effect. This individual effect reflects the 
extent to which classifier probability was biased by the motivation manipulation for 
that particular participant and was taken as a measure of neural bias.

To examine the relationship between motivation, participants’ behavioural bias 
and classifier probability, we ran a second model to test for the triple interaction 
of condition, bet and behavioural bias on classifier probability (M11). To better 
understand the directionality of this interaction, we performed a median split 
on participants’ behavioural bias, and tested for the condition × bet interaction 
on classifier probability separately for high-bias (M12) and low-bias (M13) 
participants. Finally, we tested for the triple interaction of group (high bias or low 
bias) × condition × bet (M14) on classifier probability.

Relating model parameters to behaviour and neural measures. We used linear 
regression to examine the relationship between model parameters and neural 
activity. We entered participant-level estimates of the starting point bias (zbias) and 
the drift bias (vbias) as predictor variables in regression models. The first model 
was used to predict participants’ NAcc response to the motivation consistent–
motivation inconsistent contrast (GLM 1), and assessed the extent to which each 
bias was associated with NAcc activity. The second model was used to predict 
participants’ neural bias and assessed the extent to which each bias contributed to 
the modulation of category-selective activity in the ventral visual stream.

Statement on statistics and reproducibility. All statistical tests were two-tailed 
and used an alpha level of 0.05. Data distribution was assumed to be normal but 
this was not formally tested. Sample size was determined to be comparable to other 
fMRI studies of motivational biases64 and perceptual decision-making45. The study 
employed a within-subject design and participants were not assigned to different 
experimental conditions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author on request. Behavioural data of both the reported 
experiment and the in-lab replication are available at: https://github.com/ycleong/
MotivatedPerception. The unthresholded p-map of the motivation consistent–
motivation inconsistent contrast is available at: https://neurovault.org/collections/
EAAXGDRJ/images/62743/.

Code availability
The custom code for the modelling and neuroimaging analyses is included in the 
Supplementary Software. The live version of the code is available at https://github.
com/ycleong/MotivatedPerception.

Nature HumaN BeHaviour | VOL 3 | SEPTEMBER 2019 | 962–973 | www.nature.com/nathumbehav 971

https://neurovault.org/collections/EAAXGDRJ/
https://neurovault.org/collections/EAAXGDRJ/
https://github.com/ycleong/MotivatedPerception
https://github.com/ycleong/MotivatedPerception
https://neurovault.org/collections/EAAXGDRJ/images/62743/
https://neurovault.org/collections/EAAXGDRJ/images/62743/
https://github.com/ycleong/MotivatedPerception
https://github.com/ycleong/MotivatedPerception
http://www.nature.com/nathumbehav


Articles NatURE HUMaN BEHavIOUR

Received: 10 July 2018; Accepted: 20 May 2019;  
Published online: 1 July 2019

references
 1. Bruner, J. S. & Goodman, C. C. Value and need as organizing factors in 

perception. J. Abnorm. Soc. Psychol. 42, 33–44 (1947).
 2. Dunning, D. & Balcetis, E. Wishful seeing: how preferences shape visual 

perception. Curr. Dir. Psychol. Sci. 22, 33–37 (2013).
 3. Hastorf, A. H. & Cantril, H. They saw a game; a case study. J. Abnorm. Soc. 

Psychol. 49, 129–134 (1954).
 4. Balcetis, E. & Dunning, D. See what you want to see: motivational influences 

on visual perception. J. Pers. Soc. Psychol. 91, 612–625 (2006).
 5. Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108,  

480–498 (1990).
 6. Goldiamond, I. Indicators of perception: I. Subliminal perception, subception, 

unconscious perception: an analysis in terms of psychophysical indicator 
methodology. Psychol. Bull. 55, 373–411 (1958).

 7. Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating 
the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229 (2016).

 8. Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential sampling 
models in cognitive neuroscience: advantages, applications, and extensions. 
Annu. Rev. Psychol. 67, 641–666 (2016).

 9. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for 
two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

 10. Berridge, K. C. The debate over dopamine’s role in reward: the case for 
incentive salience. Psychopharmacology 191, 391–431 (2007).

 11. Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of 
increasing monetary reward selectively recruits nucleus accumbens.  
J. Neurosci. 21, RC159 (2001).

 12. Floresco, S. B. The nucleus accumbens: an interface between cognition, 
emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).

 13. Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in 
motivated behavior: a unifying interpretation with special reference to 
reward-seeking. Brain Res. Rev. 31, 6–41 (1999).

 14. Nicola, S. M. The nucleus accumbens as part of a basal ganglia action 
selection circuit. Psychopharmacology 191, 521–550 (2007).

 15. McGinty, V. B., Lardeux, S., Taha, S. A., Kim, J. J. & Nicola, S. M. 
Invigoration of reward seeking by cue and proximity encoding in the nucleus 
accumbens. Neuron 78, 910–922 (2013).

 16. Stopper, C. M. & Floresco, S. B. Contributions of the nucleus accumbens and 
its subregions to different aspects of risk-based decision making. Cogn. Affect. 
Behav. Neurosci. 11, 97–112 (2011).

 17. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. 
Neurosci. 30, 535–574 (2007).

 18. Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that 
mediate human perceptual decision making. Nat. Rev. Neurosci. 9,  
467–479 (2008).

 19. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A 
computational analysis of the relationship between neuronal and behavioral 
responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

 20. Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. A general 
mechanism for perceptual decision-making in the human brain. Nature 431, 
859–862 (2004).

 21. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. 
Trends Cogn. Sci. 13, 403–409 (2009).

 22. Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 
13, 159–166 (2003).

 23. Hasson, U., Hendler, T., Bashat, D. B. & Malach, R. Vase or face? A neural 
correlate of shape-selective grouping processes in the human brain. J. Cogn. 
Neurosci. 13, 744–753 (2001).

 24. White, C. N. & Poldrack, R. A. Decomposing bias in different types of simple 
decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 385–398 (2014).

 25. Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: hierarchical Bayesian estimation 
of the drift-diffusion model in Python. Front. Neuroinform. 7, 14 (2013).

 26. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian 
measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 
64, 583–639 (2002).

 27. Boehm, U. et al. Estimating across-trial variability parameters of the diffusion 
decision model: expert advice and recommendations. J. Math. Psychol. 87, 
46–75 (2018).

 28. Allport, F. H. Theories of Perception and the Concept of Structure: A Review 
and Critical Analysis with an Introduction to a Dynamic-Structural Theory of 
Behavior (John Wiley & Sons, 1955).

 29. Bruner, J. S. On perceptual readiness. Psychol. Rev. 64, 123–152 (1957).
 30. Balcetis, E., Dunning, D. & Granot, Y. Subjective value determines initial 

dominance in binocular rivalry. J. Exp. Soc. Psychol. 48, 122–129 (2012).
 31. Balcetis, E. & Dunning, D. Wishful seeing: more desired objects are seen as 

closer. Psychol. Sci. 21, 147–152 (2010).

 32. van Koningsbruggen, G. M., Stroebe, W. & Aarts, H. Through the eyes of 
dieters: biased size perception of food following tempting food primes. J. Exp. 
Soc. Psychol. 47, 293–299 (2011).

 33. Voss, A., Rothermund, K. & Brandtstädter, J. Interpreting ambiguous stimuli: 
separating perceptual and judgmental biases. J. Exp. Soc. Psychol. 44, 
1048–1056 (2008).

 34. Moran, R. Optimal decision making in heterogeneous and biased 
environments. Psychon. Bull. Rev. 22, 38–53 (2015).

 35. Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. Elapsed 
decision time affects the weighting of prior probability in a perceptual 
decision task. J. Neurosci. 31, 6339–6352 (2011).

 36. Serences, J. T. Value-based modulations in human visual cortex. Neuron 60, 
1169–1181 (2008).

 37. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven 
attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

 38. Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 
years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

 39. Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic 
interaction between reinforcement learning and attention in multidimensional 
environments. Neuron 93, 451–463 (2017).

 40. Menon, V. in Brain Mapping (ed. Toga, A. W.) 597–611 (Academic Press, 2015).
 41. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right 

fronto-insular cortex in switching between central-executive and default-
mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

 42. Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. 
Dissociable neural mechanisms track evidence accumulation for selection of 
attention versus action. Nat. Commun. 9, 2485 (2018).

 43. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity  
costs and the control of response vigor. Psychopharmacology 191,  
507–520 (2007).

 44. Feng, S., Holmes, P., Rorie, A. & Newsome, W. T. Can monkeys choose 
optimally when faced with noisy stimuli and unequal rewards? PLoS Comput. 
Biol. 5, e1000284 (2009).

 45. Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. 
Bias in the brain: a diffusion model analysis of prior probability and potential 
payoff. J. Neurosci. 32, 2335–2343 (2012).

 46. Rorie, A. E., Gao, J., McClelland, J. L. & Newsome, W. T. Integration of 
sensory and reward information during perceptual decision-making in lateral 
intraparietal cortex (LIP) of the macaque monkey. PLoS One 5, e9308 (2010).

 47. Summerfield, C. & Koechlin, E. Economic value biases uncertain perceptual 
choices in the parietal and prefrontal cortices. Front. Hum. Neurosci. 4,  
208 (2010).

 48. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of 
optimal decision making: a formal analysis of models of performance in 
two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

 49. Flagan, T., Mumford, J. A. & Beer, J. S. How do you see me? The neural basis 
of motivated meta-perception. J. Cogn. Neurosci. 29, 1908–1917 (2017).

 50. Hughes, B. L. & Beer, J. S. Orbitofrontal cortex and anterior cingulate  
cortex are modulated by motivated social cognition. Cereb. Cortex 22, 
1372–1381 (2012).

 51. Korn, C. W., Prehn, K., Park, S. Q., Walter, H. & Heekeren, H. R. Positively 
biased processing of self-relevant social feedback. J. Neurosci. 32, 
16832–16844 (2012).

 52. Hughes, B. L. & Zaki, J. The neuroscience of motivated cognition.  
Trends Cogn. Sci. 19, 62–64 (2015).

 53. Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri, S.  
Behavioural and neural characterization of optimistic reinforcement learning. 
Nat. Hum. Behav. 1, 0067 (2017).

 54. Sharot, T., Korn, C. W. & Dolan, R. J. How unrealistic optimism is 
maintained in the face of reality. Nat. Neurosci. 14, 1475–1479 (2011).

 55. Ma, D. S., Correll, J. & Wittenbrink, B. The Chicago face database: a  
free stimulus set of faces and norming data. Behav. Res. Methods 47,  
1122–1135 (2015).

 56. Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).
 57. Knoblauch, K. & Maloney, L. T. Modeling Psychophysical Data in R  

(Springer, 2012).
 58. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects 

models using lme4. J. Stat. Softw. 67, 1–48 (2015).
 59. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in 

linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
 60. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S  

(Springer, 2003).
 61. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple 

sequences. Stat. Sci. 7, 457–472 (1992).
 62. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing 

problems of smoothing, threshold dependence and localisation in cluster 
inference. Neuroimage 44, 83–98 (2009).

 63. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. 
Front. Neruoinform. 8, 14 (2014).

Nature HumaN BeHaviour | VOL 3 | SEPTEMBER 2019 | 962–973 | www.nature.com/nathumbehav972

http://www.nature.com/nathumbehav


ArticlesNatURE HUMaN BEHavIOUR

 64. Hughes, B. L., Zaki, J. & Ambady, N. Motivation alters impression  
formation and related neural systems. Soc. Cogn. Affect. Neurosci. 12,  
49–60 (2017).

acknowledgements
We thank I. Ballard and members of the Stanford Social Neuroscience Laboratory for 
scientific discussions and helpful comments on earlier versions of the manuscript. The 
research was supported by the Wu Tsai Neuroscience Institute NeuroChoice Initiative. 
The funders had no role in study design, data collection and analysis, decision to publish 
or preparation of the manuscript.

author contributions
Y.C.L., B.L.H. and J.Z. designed the study. Y.C.L. and Y.W. collected and analysed the 
data. Y.C.L. and J.Z. wrote the manuscript, with revisions from Y.W. and B.L.H.

Competing interests
The authors declare no competing interests.

additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41562-019-0637-z.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Y.C.L.

Peer review information: Primary Handling Editor: Mary Elizabeth Sutherland.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Nature HumaN BeHaviour | VOL 3 | SEPTEMBER 2019 | 962–973 | www.nature.com/nathumbehav 973

https://doi.org/10.1038/s41562-019-0637-z
https://doi.org/10.1038/s41562-019-0637-z
http://www.nature.com/reprints
http://www.nature.com/nathumbehav


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Yuan Chang Leong

Last updated by author(s): May 1, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Behavioral data were collected using custom code written in MATLAB (2016b)  and the Psychophysics Toolbox (Version 3).
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The data that support the findings of this study are available from the corresponding author upon request. Behavioral data of both the reported experiment as well 
as the in-lab replication are available at: https://github.com/ycleong/MotivatedPerception. Unthresholded p-map of the Motivation Consistent – Motivation 
Inconsistent contrast is available at: https://neurovault.org/collections/EAAXGDRJ/images/62743/.
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Study description This is a quantitative study. We collected choice and reaction time data on a two-alternative-forced-choice task, while also measuring the 
blood-oxygenation-level-dependent response using fMRI. 

Research sample A convenience sample of thirty-three participants were recruited from the Stanford community. Participants provided written, informed 
consent prior to the start of the study. All experimental procedures were approved by the Stanford Institutional Review Board.  Data 
from three participants were discarded because of excessive head motion (> 3mm) during one or more scanning sessions, yielding an 
effective sample size of thirty participants (17 male, 13 female, ages 18-43, mean age = 22.3). 

Sampling strategy Convenience sampling. Participants signed up for the study on an online platform. All participants who passed the safety screening for 
MRI were enrolled in the study.  Sample size was determined to be comparable to other fMRI studies of motivational biases (e.g., 
Hughes, Zaki & Ambady, 2016, SCAN) and perceptual decision-making (e.g., Mulder et al,. 2012, J. Neuro)

Data collection Participants performed the task in the MRI scanner while researchers operated the scanner in a separate room. Data were collected 
using button presses with custom code written in MATLAB (2016b) and the Psychophysics Toolbox (Version 3). The study employed a 
within-subject design, so participants were not assigned to experimental condition. Researchers were not blind to the study hypothesis, 
but had minimal contact with participants beyond safety screening for MRI as instructions were delivered on screen while participants 
were in the scanner. 

Timing May 10th 2016 - July 1st 2016

Data exclusions Data from three participants were discarded because of excessive head motion (> 3mm) during one or more scanning sessions. Exclusion 
criteria were predetermined. 

Non-participation None.

Randomization The study employed a within-subject design, so participants were not assigned to groups. 
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Population characteristics A convenience sample of thirty-three participants were recruited from the Stanford community. Participants provided written, 
informed consent prior to the start of the study. All experimental procedures were approved by the Stanford Institutional Review 
Board.  Data from three participants were discarded because of excessive head motion (> 3mm) during one or more scanning 
sessions, yielding an effective sample size of thirty participants (17 male, 13 female, ages 18-43, mean age = 22.3). 

Recruitment Convenience sample. Participants signed up for the study on an online platform. All participants who passed the safety screening 
for MRI were enrolled in the study. 
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Ethics oversight Stanford University Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Event-related task design

Design specifications Participants performed 4 blocks (2 of each condition) of 40 trials each. Each block was approximately 8 minutes long. 
Each trial was 8 seconds long (4 seconds of motivation manipulation + 4 seconds for response). There was a variable 
inter-trial interval of 2-4seconds.  

Behavioral performance measures We recorded both button presses (face or scene) and response times. All participants were more likely to indicate that 
they saw more scene with increasing proportion of scene in an image, indicating that they were appropriately 
performing the perceptual categorization task.

Acquisition

Imaging type(s) Functional and structural

Field strength 3T

Sequence & imaging parameters Functional images were acquired in interleaved order using a T2*-weighted echo planar imaging (EPI) pulse sequence 
(46 transverse slices, TR=2s, TE=25ms, flip angle=77°, voxel size 2.9 mm^3).  
Anatomical images were acquired at the start of the session with a T1-weighted pulse sequence (TR = 7.2ms, TE = 
2.8ms, flip angle=12°, voxel size 1 mm^3). 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessing was performed using FSL (v. 5.98). Brain extraction was performed using the BET routine available as part 
of the FSL software. Preprocessing consists of motion correction, slice-timing correction, removal of low-frequency 
drifts using a temporal high-pass filter (100ms cutoff), and spatial smoothing with a 4-mm FWHM kernel.

Normalization For multivariate classification analyses, we trained and tested our classifier in each participant’s native space. For all 
other analyses, functional volumes were first registered to participants’ anatomical image (Boundary-Based 
Registration) and then to a template brain in Montreal Neurological Institute (MNI) space (affine transformation with 12 
degrees of freedom).

Normalization template MNI152

Noise and artifact removal Stimulus onset, reaction time and head movement parameters were entered into the general linear models as nuisance 
regressors. With the exception of head movement parameters, all regressors were convolved with a hemodynamic 
response function.

Volume censoring N.A.

Statistical modeling & inference

Model type and settings We implemented two whole-brain mass univariate models using FSL/FEAT v.5.98. At the first level (i.e. runs from the 
same participant), we estimated fixed effects models. At the second level (i.e. across participants), we estimated mixed 
effects models. We also estimated a multivariate model to classify whether participants were seeing a face or a scene 
based on BOLD activity (see below).

Effect(s) tested We implemented a linear model (GLM 1) to contrast BOLD activity on Motivation Consistent trials and that on 
Motivation Inconsistent trials. A Motivation Consistent trial was defined as a trial on which participant categorized an 
image as the category they were motivated to see.  
We implemented a second linear model (GLM 2) in which the onset of each trial was modeled as a separate regressor. 
This model allowed us estimate a separate statistical map for each trial (i.e. single trial activation patterns).

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
The nucleus accumbens region of interest (ROI) was defined using the Harvard-Oxford subcortical 
structural atlas. The ROI can also be downloaded from the following NeuroVault collection: https://
neurovault.org/collections/EAAXGDRJ/.

Statistic type for inference
(See Eklund et al. 2016)

Threshold-free-cluster-enhancement 
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Correction FWE Corrected

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Multivoxel pattern analyses were performed using tools available as part of the nilearn Python module. An 
L1-regularized logistic regression model (C = 1) was trained on BOLD data from the localizer task to classify 
the image category (face or scene) participants were seeing on each localizer trial. Analysis was restricted 
to voxels in a ventral visual stream mask consisting of the bilateral occipital lobe and ventral temporal 
cortex. The mask was created in MNI space using anatomical masks defined by the Harvard-Oxford Cortical 
Structural Atlas. The mask was then transformed into each participant’s native space using FSL’s FLIRT 
implementation, and classification was performed in participants’ native space. The trained model was 
then applied to the single trial activation patterns in the experimental task (GLM 2). On each trial, the 
classifier returned the probability that the participant was seeing a scene rather than a face based on 
activity in the ventral visual stream mask. 
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