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Expert advisors often make surprisingly inaccurate predictions about the future, yet people heed their
suggestions nonetheless. Here we provide a novel, computational account of this unrealistic optimism in
advice taking. Across 3 studies, participants observed as advisors predicted the performance of a stock.
Advisors varied in their accuracy, performing reliably above, at, or below chance. Despite repeated
feedback, participants exhibited inflated perceptions of advisors’ accuracy, and reliably “bet” on
advisors’ predictions more than their performance warranted. Participants’ decisions tightly tracked a
computational model that makes 2 assumptions: (a) people hold optimistic initial expectations about
advisors, and (b) people preferentially incorporate information that adheres to their expectations when
learning about advisors. Consistent with model predictions, explicitly manipulating participants’ initial
expectations altered their optimism bias and subsequent advice-taking. With well-calibrated initial
expectations, participants no longer exhibited an optimism bias. We then explored crowdsourced ratings
as a strategy to curb unrealistic optimism in advisors. Star ratings for each advisor were collected from
an initial group of participants, which were then shown to a second group of participants. Instead of
calibrating expectations, these ratings propagated and exaggerated the unrealistic optimism. Our results
provide a computational account of the cognitive processes underlying inflated perceptions of expertise,
and explore the boundary conditions under which they occur. We discuss the adaptive value of this
optimism bias, and how our account can be extended to explain unrealistic optimism in other domains.

Keywords: advice-taking, computational modeling, confirmation bias, optimism bias, social learning

Supplemental materials: http://dx.doi.org/10.1037/xge0000382.supp

In a series of forecasting tournaments conducted between 1984
and 2003, 284 experts including well-known political analysts,
economists, and journalists were recruited to predict the likelihood
that different political events would occur within a specified time-
frame (e.g., Will the United States go to war in the Persian Gulf in
the next 10 years?). These tournaments resulted in 28,000 specific,
testable predictions, which rarely performed better than chance
(Tetlock, 2005). Despite the poor performance, individuals who
made these predictions were described as experts by the media,
and their predictions heeded by policymakers. Investors likewise
put their faith in financial “gurus” who are at chance at predicting
the market (Shefrin, 2000), and consumers adopt questionable
health practices recommended by medical talk shows (Korownyk
et al., 2014). Even in laboratory experiments, human participants

often follow misleading advice, leading to poor decisions (Biele,
Rieskamp, & Gonzalez, 2009; Doll, Jacobs, Sanfey, & Frank,
2009; Staudinger & Büchel, 2013).

In all these cases, people trust others’ opinions more than they
should, a phenomenon we term optimism bias in advice taking.
Why do decision-makers1 exhibit this bias? Here we explore two
potential sources of undue optimism in social settings—biased
initial expectations and confirmation bias. In doing so, we focus on
decision-makers’ beliefs about an advisor’s ability to make accu-
rate forecasts of future events.

Biased Initial Expectations

Decision-makers often have to quickly judge an advisor’s ex-
pertise before deciding whether to act on her advice. As with other
first impressions, people often rely on superficial cues to assess
expertise (Bonaccio & Dalal, 2006; Hovland, Janis, & Kelley,
1953). For instance, decision-makers privilege credentials (e.g.,
passing a certification examination), experience in a related do-
main, and prestige (e.g., working for a renowned firm) when
deciding how accurate advisors are likely to be (Berlo, Lemert, &
Mertz, 1969; Birnbaum & Stegner, 1979). Expert advisors are
often portrayed to have privileged knowledge of their domain of

1 For clarity of prose, we will be using the term decision-maker to refer
to the individual receiving advice. Several other equivalent terms have
been used in the related literature, including judge, client, advice-seeker
and principal. We will refer to the individual providing advice as the
advisor.

Yuan Chang Leong and Jamil Zaki, Department of Psychology, Stanford
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Data for all three experiments, example stimuli, and custom code for
computational models are available on GitHub: https://github.com/ycleong/
AdviceTaking.

These results were previously presented in a poster at the 2016 Society
for Personality and Social Psychology Annual Meeting in San Diego, CA,
and as a symposium talk at the 2017 Society for Personality and Social
Psychology Annual Meeting in San Antonio, TX.

Correspondence concerning this article should be addressed to Yuan
Chang Leong, Department of Psychology, Stanford University, 450 Serra
Mall, Jordan Hall, Stanford University, Stanford, CA 94305-2130. E-mail:
ycleong@stanford.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Journal of Experimental Psychology: General © 2017 American Psychological Association
2017, Vol. 0, No. 999, 000 0096-3445/17/$12.00 http://dx.doi.org/10.1037/xge0000382

1

https://github.com/ycleong/AdviceTaking
https://github.com/ycleong/AdviceTaking
mailto:ycleong@stanford.edu
http://dx.doi.org/10.1037/xge0000382


expertise. In these cases, decision-makers are predisposed to be-
lieve in advisors’ expertise, even before these advisors make any
specific predictions. These initial expectations can bias decision-
makers toward taking even inaccurate advice (cf. Tetlock, 2005).

Biased Learning

Even in the face of initial expectations, decision-makers adjust
their expectations about advisors over time, for instance increas-
ingly relying on advisors who have proved accurate in the past
(Yaniv & Kleinberger, 2000). However, decision-makers’ learning
can be systematically biased. In particular, the desire to maintain
consistency in their beliefs leads individuals toward confirmation
bias: overweighting information that confirms their expectations,
while discounting disconfirming information (Kunda, 1990; Nick-
erson, 1998; Oswald & Grosjean, 2004).

In the context of advice taking, confirmation bias could com-
pound the effects of initial optimism. Consider an advisor who
makes an erroneous prediction. The advisor might be inept, or
simply unlucky. How would a decision maker interpret the advi-
sor’s error? One possibility is that decision-makers who already
believe the advisor to be accurate would more readily attribute his
errors to chance, while attributing accurate predictions to his
ability.

A Computational Approach

To tease apart the influence of initial expectations versus con-
firmation bias, one must dynamically track decision-makers’ be-
liefs about an advisor’s expertise. One approach for doing so
entails building computational models that make trial-by-trial es-
timates about decision-makers’ beliefs, and testing those models
against experimental data. Such models have successfully uncov-
ered mechanisms through which people form beliefs about others’
emotional states (Ong, Zaki, & Goodman, 2015), goals (Baker,
Saxe, & Tenenbaum, 2009), and intentions (Diaconescu et al.,
2014). Here, we likewise use computational models to (a) estimate
decision-makers’ initial expectations, (b) dynamically track how
these expectations shift over time, and (c) evaluate the role of
biased expectations and learning in overly optimistic advice tak-
ing.

The Present Study

We adapted an experimental task that mimicked real-world
financial advice-taking (Boorman, O’Doherty, Adolphs, & Rangel,
2013). In the Stock Prediction phase of the task, participants
predicted whether a fictitious stock would increase or decrease in
price across successive time periods. In the Advisor Evaluation
phase, participants observed financial advisors making predictions
about a different stock, and made bets on whether these predictions
would be correct or incorrect. In the Joint Prediction phase, they
received recommendations from the advisors whom they had ob-
served in the Advisor Evaluation phase, and predicted the perfor-
mance of a third stock after receiving that advice.

In Experiment 1, we evaluated participants’ perceptions of ad-
visor expertise, and their utilization of advice in making stock
predictions. We hypothesized that participants would exhibit an
optimism bias, relying on advice more than they should. We fit

computational models to determine whether these biases were
attributable to optimistic initial expectations, confirmation bias or
a combination of both factors. In Experiment 2, we explicitly
manipulated participants’ initial expectations by providing false
information about the advisors, and assessed if and how these
expectations affected participants’ decisions. Finally, in Experi-
ment 3, we investigated whether the optimism bias “spreads”
across generations of decision-makers. One group of participants
performed the financial advice-taking task and rated each advisor
from one to five stars based on their perception of the advisor’s
expertise. The average ratings of each advisor were then passed to
a second group of participants prior to them performing the task.

Together, the current work provides a computational account of
an optimism bias in advice-taking, and explores the conditions
under which unrealistic optimism occurs.

Experiment 1

In Experiment 1, participants learned about the expertise of
advisors and later made decisions about utilizing each advisor’s
advice when making stock predictions. This task allowed us to
examine whether participants overestimated advisors’ expertise,
and whether they utilized advice more often than they should. We
also formalized a computational model of how participants learned
about advisors’ expertise, which we then used to separately exam-
ine the role of initial expectations and confirmation bias in con-
tributing to optimistic advice taking.

Method

Participants. Twenty-seven participants were recruited from
the Stanford community (18 male, 9 female, ages 19–43, mean
age ! 24.2). All participants provided written, informed consent
prior to the start of the study. All experimental procedures were
approved by the Stanford Institutional Review Board. Participants
were paid up to $16 depending on their performance on the task.
We discarded data from one participant who missed more than
10% of the trials, yielding a final sample of 26 participants.

Stimuli. Face stimuli of White male faces posing calm ex-
pressions with mouth closed and eyes gazing straight ahead were
taken from the IASLab Face Set,2 and used as photos for advisors.
Stimuli were presented using MATLAB software (MathWorks)
and the Psychophysics Toolbox (Brainard, 1997). Example stim-
uli can be viewed on our GitHub repository (https://github.com/
ycleong/AdviceTaking#example-face-stimuli).

Experimental task and design. The Financial Advice and
Choice task (FAC task, Figure 1A, adapted from Boorman et al.
(2013)), consists of three phases. In the Stock Prediction phase,
participants were asked to predict the price fluctuation of a ficti-
tious stock based on the stock’s past history. In each time period,
participants had to predict whether the price of the stock would go
up or down in the next time period. Participants had 3 seconds to
respond before the trial timed out. Once they made their predic-
tion, they were shown the actual performance of the stock (1.2

2 Development of the Interdisciplinary Affective Science Laboratory
(IASLab) Face Set was supported by the National Institutes of Health
Director’s Pioneer Award (DP1OD003312) to Lisa Feldman Barrett. More
information is available online at www.affective-science.org.
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seconds) followed by feedback as to whether their prediction was
right or wrong (1.2 seconds). After a 1-s interval, they moved onto
the next trial. Participants began with an endowment of 800 points,
and earned 10 points for each correct prediction, and lost 10 points
for each incorrect prediction. At the end of the experiment, the
points were converted to money (10 points ! $0.10) to determine
participants’ payment.

Participants made predictions for the same stock over 100
consecutive time periods, with a self-paced break at time period
50. We manipulated the performance of the stock such that the
probability that the stock would increase in value, p, “drifted”
across time (Figure 1B). More specifically, p was initialized to a
random value between 0 to 1. At each subsequent time period t, p
was drawn randomly from a beta distribution with mean set to the
p of the previous time period (t " 1) and a standard deviation of
0.07. Effectively, this means that when the price of a stock in-
creases, it tends to keep increasing, and when the price of a stock
decreases, it tends to keep decreasing. Previous work using similar
setups has shown that participants are able to pick up on these

trends to make accurate predictions (Behrens, Hunt, Woolrich, &
Rushworth, 2008; Behrens, Woolrich, Walton, & Rushworth,
2007; Boorman et al., 2013). The Stock Prediction phase provided
participants with an opportunity to familiarize themselves with the
dynamics of the stock trend before the subsequent phases of the
task. We examined participants’ predictions in the Stock Pre-
diction phase to evaluate whether participants relied on the
stock trend to make accurate predictions (see Analysis of Stock
Prediction and Joint Prediction phases).

In the Advisor Evaluation phase, participants observed as finan-
cial advisors predicted the price fluctuations of a different stock.
The performance of the stock was manipulated using the same
procedure. In each time period, participants were presented with a
photograph of one of three male Caucasian faces, each represent-
ing a financial advisor. Participants were then asked to bet for the
advisor—guessing that his next prediction would be accurate—or
to bet against him—guessing that it would be inaccurate. Partic-
ipants had 3 seconds to make their bet. They were then shown the
advisor’s prediction (1.2 seconds) followed by the actual perfor-

Figure 1. Task Design. (A) Financial advice choice (FAC) task. Stock Prediction Phase. Participants were
tasked to predict the price fluctuation of a stock in consecutive time periods. Advisor Evaluation Phase.
Participants observed financial advisors perform the same stock prediction task. In each time period, participants
had to bet on whether the advisor would make a correct prediction. Participants observed 3 different advisors,
with accuracies of 75%, 50% and 25% respectively. Joint Prediction Phase. Participants performed the stock
prediction task on a third stock. Prior to making their predictions, participants received a recommendation from
an advisor they observed in the Advisor Evaluation phase. (B) Stock Behavior. On each time period, stock
performance (red dots, 1 ! up, 0 ! down) is determined probabilistically. The probability that the price of the
stock will increase drifts from time period to time period (p, blue dotted line). The Bayesian Learning model is
used to obtain the best estimate of p given the past outcomes of the stock (p̂, green solid line). See the online
article for the color version of this figure.
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mance of the stock (1.2 seconds). Participants were then given
feedback about their bets—they earned 10 points for correct bets
and lost 10 points for incorrect bets (1.2 seconds). After a 1-s
interval, they moved onto the next time period.

Each participant encountered three advisors with different levels
of expertise. One advisor made accurate predictions in 75% of the
time periods (75% Advisor). Another advisor was at chance at
making predictions (50% Advisor), and a third advisor was accu-
rate in 25% of the time periods (25% advisor). For each partici-
pant, the photograph associated with each accuracy level was
randomly selected from a subset of faces from the IASLab Face
Set. Participants were not given any information about the exper-
tise of the advisors, and thus had to learn about the advisors over
time. Participants made bets for 108 time periods (36 time periods
with each advisor). As participants made their bets before seeing
the advisor’s prediction, the bets are not influenced by beliefs
about the stock trend. Instead, they provide us with a proxy
measure of participants’ beliefs about each advisor’s accuracy and
how these beliefs evolved over time. The order of advisors was
pseudorandomized such that the transition probability between any
pair of advisors was equated (e.g., a 75% advisor was equally
likely to be followed by a 50% advisor as a 25% advisor).

In the Joint Prediction phase of the task, participants predicted
the performance of a third fictitious stock. At the start of each trial,
participants received a recommendation from one of the advisors
they had encountered in the Advisor Evaluation phase. A photo of
the advisor was presented, along with a prediction of whether the
price of the stock would increase or decrease (1.2 seconds). After
seeing the advisor’s recommendation, participants were given 3
seconds to predict whether the stock’s price would increase or
decrease. Participants were then told whether their prediction was
correct (1.2 seconds), and if they earned or lost points (1.2 sec-
onds). Notably, in this phase, participants could make their pre-
dictions based on two sources of information: the advisor’s pre-
diction, and the stock’s performance over recent time periods.
Participants made predictions about the stock for 216 time periods
(72 with each advisor). The order of advisors was again pseudo-
randomized to equate the transition probability between advisors.

At the end of the experiment, participants were asked how
accurate they thought each advisor was at making predictions
about the stock. Participants were asked to enter a percentage from
0–100%.

Learning about advisors’ expertise. We operationalized par-
ticipants’ beliefs about an advisor’s expertise through their bets
during the Advisor Evaluation phase. Specifically, we calculated
the proportion of trials on which participants bet for each advisor’s
prediction, and used robust Bayesian estimation to examine if the
proportions were different from chance (see Robust Bayesian
estimation for details).

Computational modeling. The proportion of bets alone, how-
ever, ignores the temporal dynamics of participants’ beliefs about
advisors as they learn more about their performance. To better
capture these dynamics, we fit participants’ bets to a set of com-
putational models. Importantly, we fit two models that differed in
their assumptions about how decision-makers learn about the
advisors based on feedback. Our Bayesian Learning model as-
sumes that participants learned in a statistically optimal fashion,
whereas our Confirmation Bias model instead assumed that par-
ticipants preferentially learn from evidence that accords with their

previous beliefs. Comparing the fit of each model to participants’
data allowed us to assess whether participants indeed exhibit
biases in learning about advisors. Further, each model produced an
estimate for participants’ priors, or initial expectations, about an
advisor’s expertise. These priors offer a quantitative assessment of
the extent to which observers exhibit unreasonable optimism about
advisors before encountering evidence about their performance.

Bayesian Learning model. The Bayesian Learning model
assumes that participants update their beliefs about each advisor’s
expertise in a statistically optimal manner, in accordance with
Bayes rule:

P(expertise!outcome) " P(expertise) # P(outcome!expertise)
posterior prior likelihood of observed data

This class of models has been found to accurately describe how
individuals learn the probability of correct advice from an advisor
(Behrens et al., 2008), reward probabilities in the environment
(Behrens et al., 2007) and the association between visual cues and
task contexts (Waskom, Frank, & Wagner, 2017).

On each trial, participants have an existing, or prior, belief about
an advisor’s expertise that can be represented as a probability
distribution between 0 (nonexpert) and 1 (expert; Figure 2A).
Expertise is linearly related to the likelihood that the advisor will
provide accurate advice (Figure 2B). When participants observe
the outcome of an advisor’s predictions, they consider the likeli-
hood of that outcome given the advisor’s expertise. For example,
an inaccurate prediction would be more likely with a nonexpert
advisor than an expert advisor. Bayes rule provides a mathemati-
cally precise method for computing the updated, or posterior,
belief—by taking the normalized product of the prior distribution
and the likelihood function (Figure 2D, blue line). The posterior
belief on a given current trial then becomes the prior for the
subsequent trial, thus capturing participants’ evolving beliefs about
advisor expertise.

Our Bayesian model assumes that participants weigh recent expe-
riences more than distant ones. This is implemented via the inclusion
of a parameter v that estimates the volatility in an advisor’s accuracy,
and determines the rate at which the estimates of an advisor’s exper-
tise change from trial-to-trial (Behrens et al., 2007; Waskom et al.,
2017). When an advisor is highly erratic (i.e., quick alternations
between being accurate and inaccurate), v is high, and recent experi-
ences with the advisor would be weighted more heavily, resulting in
estimates of advisor expertise changing quickly from trial-to-trial.
Alternatively, when an advisor is consistent, v is low, and estimates of
advisor expertise change less with each new observation. As such, v
can be thought as an “optimal learning rate” estimated using Bayesian
inference.

Formally, the model can be written as:

p (at, vt !y1:t) " p (yt !at)! p (at$1, vt$1)!y1:t$1 p (at !at$1, vt)dat$1

where # denotes advisor expertise, y denotes an observed outcome
(accurate prediction: y ! 1, inaccurate prediction: y ! 0) and
p(at,vt | y1:t) denotes the posterior probability of advisor expertise
and volatility, after having observed outcomes from time period 1
to time period t. At each time period, the posterior estimate of the
advisor’s expertise was approximated using grid sampling, and the
continuous distributions were discretized to allow for numerical
integration We can then marginalize over v to obtain a posterior
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distribution for advisor expertise (e.g., Figure 2D), and compute
the mean of that distribution as the best estimate of #t. The full
algebraic formulation of the model is provided in the supplemental
materials.

Our model differs from previous work in its treatment of how
participants’ initial belief about advisors is specified. Whereas
previous work assumes a uniform prior, reflecting no prior knowl-
edge about the advisor, we hypothesized that participants begin the
experiment with preconceived beliefs about advisor expertise.
Hence, instead of explicitly specifying an initial belief distribution,
we fit the model to participants’ data to find the initial belief
distribution that would give rise to the best fit to the data. Specif-
ically, we assumed that participants’ initial belief over #1 can be
described by a Beta distribution:

%1 " Beta(%, &)

The shape (i.e., skew, mean, variance) of a Beta distribution
depends on two parameters, # and $. The mean estimate of the
distribution (i.e., the expected value of #1, denoted here as #̂1) can
be calculated as:

%̂1 ' %
% ( &

By varying # and $, we can define a Beta distribution with more
mass on the right (i.e., #̂1 % 0.5, “optimistic” beliefs) or a Beta
distribution with more mass on the left (i.e., #̂1 & 0.5, “pessimis-
tic” belief). When # % $, the distribution has greater mass on the
right, indicating an optimistic belief in the advisor’s expertise. As
an example, Figure 2A shows an optimistic belief distribution
defined by Beta(5,3), with #̂1 ! of 0.625. Conversely, if $ % #,
the distribution has greater mass on the left, indicating a pessimis-
tic initial belief about the advisor’s expertise. We fit the model to
data in the Advisor Evaluation phase to find the values of # and $
that provided the best fit to each participant’s responses (see Model
fitting and comparison section below). We then take the Beta
distribution parameterized with the best-fit values of # and $ to be
our estimate of that participant’s prior beliefs about advisors’
expertise.

Confirmation Bias model. The Confirmation Bias model
modifies the Bayesian Learning Model to assume that participants
“explain away,” or underweight, new information contradicting
their expectations, such as an inaccurate prediction from an advisor
whom participants expect to be accurate. Specifically, the model
computes a new likelihood function, pb(outcome | expertise), that
is the weighted combination of the likelihood of the observed

Figure 2. Comparison between the Bayesian Learning model and the Confirmation Bias model. (A) Probability
distribution representing participants’ prior belief about the advisor’s expertise. The distribution has greater mass
on the right, indicating an optimistic expectation. (B) Likelihood function for the Bayesian learning model when
the advisor makes an inaccurate prediction. An advisor with low expertise is more likely to provide an inaccurate
prediction than an advisor with high expertise. (C) Likelihood function for the Confirmation Bias model when
an advisor, whom participants expect to be accurate, makes an inaccurate prediction. There is decreased
likelihood for an inaccurate prediction at lower levels of expertise, implying that the inaccurate prediction is less
diagnostic of low expertise. (D) Probability distributions representing the posterior belief about the advisor’s
expertise for the Bayesian Learning model (blue/dark grey) and the Confirmation Bias model (red/light grey).
The prior belief in 2A is plotted again (black dotted line) for comparison. The decrement in participants’ estimate
of advisor’s expertise is smaller for the Confirmation Bias model than the Bayesian Learning model after
observing inaccurate advice. See Fig. S2 for a trial-by-trial comparison of the two models over 10 consecutive
time periods. See the online article for the color version of this figure.
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outcome and that of the expected outcome (Figure 2C, see also
supplemental methods):

if #̂i % 0.5,

pbi(outcome ! 0 | expertise) '

bi ( p(outcome ! 1 | expertise) ) (1 " bi) ( p(outcome !
0 | expertise)

or

if #̂i & 0.5,

pbi(outcome ! 1 | expertise) '

bi ( p(outcome ! 0 | expertise) ) (1 " bi) ( p(outcome !
1 | expertise)

where pbi(outcome | expertise) denotes the likelihood function
used by the Confirmation Bias model on trial i, #̂i denotes partic-
ipants’ mean estimate of the advisor’s accuracy on trial i, and bi is
a bias term that weights the influence of expectations, and scales
linearly with participants’ current estimates about the advisor:

bt ' !%̂t $ 0.5!
such that the magnitude of bias is greater when participants expect
advisors to be highly accurate (high #̂i) or highly inaccurate (low
#̂i). As such, depending on participants’ current expectations about
an advisor’s expertise, the model assigns different likelihoods to
receiving accurate or inaccurate advice from an advisor (Fig. S1).
When participants have optimistic expectations (i.e., #̂i % 0.5), the
likelihood of receiving inaccurate advice from an inaccurate advi-
sor is decreased, and the likelihood of receiving inaccurate advice
from an accurate advisor is increased (Figure 2C). This implies
that accurate advice is weaker evidence, or less diagnostic, of low
expertise. In contrast, if participants had pessimistic expectations
(i.e., #̂i & 0.5), the likelihood of receiving accurate advice from an
accurate advisor is decreased, and the likelihood of receiving
accurate advice from an inaccurate advisor is increased, implying
that accurate advice is less diagnostic of high expertise.

Model-fitting and model comparison. To find the prior dis-
tribution that best describes participants’ initial belief about advi-
sors’ expertise, we fit both the Bayesian Learning and Confirma-
tion Bias models to participants’ bets in the Advisor Evaluation
phase to find the best-fit values of # and $ for each participant. As
participants make their bets before seeing the advisor’s stock
prediction, knowledge of the stock trend does not help participants
in making their bets. Instead, participants ought to bet for or
against an advisor’s prediction based on their beliefs about the
advisor’s expertise. We assumed that the relationship between
participants’ estimate of an advisor’s expertise and their bets on
the advisor’s prediction is described by a logistic function:

p(beti ' FOR) ' 1
1 ( e$)(âi$0.5)

where #̂i denotes participants’ mean estimate of the advisor’s
expertise on trial i, and * is a subject-specific free parameter that
determines the gain of the logistic function. * allows the choice
rule to interpolate between a maximization rule (i.e., always bet-
ting for the advisor’s prediction when #̂i % 0.5, and always betting
against the advisor’s prediction when #̂i & 0.5), a “soft” maximi-

zation rule that assumes participants are more likely to bet for the
advisor when #̂i is high, and a random choice rule (Fig. S3). In
particular, for large values of *, the choice rule approaches max-
imization, and for small values of *, the choice rule approaches
random choice. For moderate values of *, the choice rule weights
the probability of betting for the advisor’s prediction by the esti-
mate of the advisor’s accuracy. As * is fit to each individual
participant separately, the logistic function allowed us to capture a
spectrum of choice strategies across participants.

Accordingly, we can fit the models to each participant’s data to
find the best-fit values of #, $ and *. Because #, $, and * can
theoretically take on any values from 0 to positive infinity, we
imposed regularizing priors (X + Gamma(2,3)) to facilitate real-
istic values during model fitting (Daw, 2011). We then fit the
model to find the values of #, $ and * that maximize the posterior
probability of the data given the model. These best-fit values are
referred to as the maximum a posteriori (MAP) parameter esti-
mates.

We evaluated model fit based on the average likelihood per trial,
corrected for the number of free parameters in the model. The
corrected average likelihood per trial is derived from the Akaike
Information Criterion (AIC; Akaike, 1974).

AICc ' $2log lik ( 2k ( 2k(k ( 1)
N $ k $ 1

where AICc refers to the finite sample size corrected version of
AIC recommended for small data sets (Burnham & Anderson,
2004; Hurvich & Tsai, 1989), lik is the maximum likelihood of the
data given the model, k is the number of free parameters, and N is
the number of data points. The second term serves as a penalty
term that scales with the number of free parameters, and the third
term adds a correction for finite-sample biases. From the AICc, we
computed an unbiased estimate of the expected log likelihood of
out-of-sample data given the model (Akaike, 1978; Gelman,
Hwang, & Vehtari, 2014):

logL ' $1
2AICc

which was then divided by the number of trials, and exponentiated
to obtain the corrected average likelihood per trial given the
model:

average likelihood ' exp#logL
N $

The corrected average likelihood per trial denotes the average
likelihood of predicting a new data point given the model. It varies
between 0 and 1, with 0.5 indicating chance likelihood and 1
indicating perfect correspondence. Notably, as the average likeli-
hood measure was derived from the expected log likelihood of
out-of-sample data, it is a measure of model fit that has been
corrected for the number of free parameters and can be used to
compare between models. We computed the average likelihood per
trial separately for each participant. To compare between the
model fits of the Confirmation Bias and Bayesian Learning mod-
els, we applied robust Bayesian estimation to assess if the within-
participant differences in corrected average likelihood per trial
were credibly different from 0 (see Robust Bayesian Estimation
below). In examining within-participant difference in model fits
rather than aggregate model performance, we treat model fit as a
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random effect, with the implicit assumption that the best-fitting
model might differ between participants.

Model simulations. We performed a simulation study to iso-
late the pattern of results we would observe if participants’ behav-
ior were perfectly described by each model. We simulated the
Confirmation Bias and Bayesian Learning models performing the
Advisor Evaluation phase of the task with the best-fit parameters,
and examined whether simulated model behavior replicated the
pattern of results observed in the data. For each participant, we
generated 36 predictions each from a 75% accurate advisor, a 50%
accurate advisor and a 25% accurate advisor. We then simulated
the bets that the models would make on each time period, given
that participant’s best-fit values of #, $, and *. We repeated the
procedure 500 times, and computed the average number of time
periods on which the models bet for each advisor.

In addition, to better visualize the differences between the two
models, we simulated the two models learning about an advisor
with chance accuracy over the course of 10 time periods. On each
trial, we plot the posterior distribution over the advisor’s expertise,
and observed how the behavior of the two models diverged over
time (Fig. S2, see Trial-by-trial comparison of Bayesian Learning
model and Confirmation Bias model in supplemental materials).
Finally, we ran a parameter recovery study to examine whether the
two models are identifiable. We fit the models to simulated data
with known parameter values and showed that we were able to
accurately recover the true values of #1 and * (Fig. S3, see
Parameter recovery study in supplemental materials).

Analysis of stock prediction and joint prediction phases.
Participants made predictions about the price fluctuations of a
stock in both the Stock Prediction and Joint Prediction phases. In
the Stock Prediction phase of the task, participants made their
predictions without recommendations from advisors, and had to
rely solely on the stock trend. As one measure of participants’
performance, we computed the percentage of trials on which they
correctly predicted the stock. As a second measure of participants’
performance, we quantified the percentage of trials on which their
bets were consistent with the stock trend—betting for the stock
when it was likely to rise in value (p % .5) and against it when it
was likely to fall (p & .5). To do so, we estimated p by applying
the Bayesian Learning model to the history of the stock outcomes
until that trial. We then used a mixed effects logistic regression
model to predict participants’ stock predictions from the estimated
stock trend. 95% confidence intervals (CI) for the regression
coefficients were computed using a parametric bootstrap analysis
with 500 iterations, and are reported in square brackets next to the
estimated coefficients.

In the Joint Prediction phase, participants again predicted the
price fluctuation of another fictitious stock. However, unlike the
Stock Prediction phase, participants could now rely on two distinct
pieces of information when making their predictions: the stock
trend based on the previous outcomes of the stock, and a recom-
mendation from one of the advisor they observed in the Advisor
Evaluation phase. To evaluate how much participants weighed
each source of information, we ran a mixed effects logistic regres-
sion model that predicted participants’ stock predictions from the
stock trend (as estimated by the Bayesian Learning model) and the
recommendation from each advisor. We z-scored each variable
prior to entering it into the regression, and obtained the standard-
ized beta coefficients for p and the recommendations from each

advisor. This regression allowed us separately to test (a) whether
participants weighted the stock trend more or less than the advice
they received, (b) whether participants weight advice based on the
relative accuracies of each advisor, and (c) whether participants
overweight the advice of an advisor with chance accuracy.

If participants learned about the advisors in an unbiased manner,
they would learn that the 75% advisor is just as likely to provide
accurate advice as the 25% advisor is to provide inaccurate advice.
However, if participants’ learning was biased by optimistic initial
beliefs and confirmation bias, their estimates of advisors’ expertise
would be inflated. In this case, participants would be more likely
to follow the advice of the 75% advisor than to go against the
advice of the 25% advisor. To compare the relative influence of the
75% advisor and the 25% advisor, we ran a second mixed model
logistic regression with an advisor by advice interaction that di-
rectly tested whether the 75% advisor had a stronger influence on
participants’ choices than the 25% advisor.

Robust Bayesian estimation. For statistical comparisons, we
adopted a Bayesian estimation approach that computes the posterior
distribution of parameter estimates from the data. Specifically, the
statistic of interest was assumed to be described by a t-distribution,
with posterior estimates of the mean (,), standard deviation (-),
normality (.) estimated from the data using Markov chain Monte
Carlo (MCMC) with noncommittal priors (see supplemental materi-
als). We defined the 95% highest density interval (HDI) of the
posterior distribution of , as the 95% credible interval of ,. We refer
to a “credible effect” whenever the 95% HDI does not include the
comparison value. For example, if the 95% HDI of the posterior
distribution of the mean within-participant difference in corrected
average likelihood per trial (e.g., ,CB-BL) of two models does not
include 0, we can conclude that that the corrected average likelihood
per trial of the two models are credibly different. Effect size was

defined as *$0
+

. The Bayesian estimation approach and its advan-
tages of over traditional t tests are fully described in Kruschke (2013).

Additional comparison models. We also compared the per-
formance of the Confirmation Bias and Bayesian Learning models
against other plausible models: a “Win-Stay-Lose-Shift” (WSLS)
model that makes the same bet after a correct bet and the opposite
bet after an incorrect bet, a reinforcement learning model with a
temporal difference learning rule (TD), and a baseline “Null”
model that fits a constant p(bet ! FOR) to each participant (see
Additional comparison models in supplemental materials).

Data and code availability. Data for all three experiments,
example stimuli, and custom code for all computational models are
available at https://github.com/ycleong/AdviceTaking.

Results

Stock prediction phase. Participants correctly predicted the
stock’s price fluctuation on 55% of the trials, which was credibly
higher than chance (95% HDI [52%, 58%]). As stock performance
is stochastic (i.e., the price of the stock can decrease even when the
trend suggests that the price of the stock is likely to increase), this
measure likely underestimates participants’ learning of the stock
trend. We can use the Bayesian Learning model to obtain the best
estimate of the stock trend given past outcomes of the stock. Even
if participants’ predictions were always consistent with the best
estimate of the stock trend, they would only have been accurate on
60% of the trials (95% HDI [57%, 63%]).
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For this phase of the task, we were interested in how participants
predicted the stock rather than how well participants predicted the
stock. In particular, we were interested in whether participants
used the stock trend to make their stock predictions. We found
that, on average, participants’ predictions aligned with the stock
trend on 66% of the trials (95% HDI [62%, 71%]). A mixed effects
logistic regression model indicated that the stock trend reliably
predicted participants’ stock predictions ($ ! 0.95, 95% CI [0.86,
1.05], z ! 18.8, p & .001), suggesting that participants relied on
the stock’s past performance when making their stock predictions.

Advisor evaluation phase. On each trial, participants bet for
or against an advisor’s prediction. These bets were indicative of
participants’ beliefs about how accurate they thought each advisor
was on each trial. Over time, participants became more likely to
bet for the 75% advisor’s prediction (M ! 84%, 95% HDI [79%,
93%]), indicating that they learned that this advisor was accurate.
Participants also became less likely to bet for the 25% advisor’s
prediction (M ! 23%, 95% HDI [12%, 29%]), indicating that they
learned that this advisor was inaccurate. On average, participants
bet for the 50% advisor on more than 50% of the trials (M ! 67%,
95% HDI [60%, 78%]), indicating that they were optimistically
biased in their assessment of this advisor (Figure 3A and 3B).

The 75% advisor was as accurate as the 25% advisor was
inaccurate. If participants learned about the advisors in an unbiased
manner, they would learn that the 75% advisor provides the same
amount of useful information as the 25% advisor, and that they
should bet for the former as much as they bet against latter.
Instead, we found that participants were more likely to bet for the
75% advisor than they were to bet against the 25% advisor
(MDiff ! 6%, 95% HDI [0%, 12%]), suggesting that their learning
was optimistically biased. In the section below, we examine the
optimism bias with model-based analyses.

Model-based analyses. The two computational models allow
us to estimate participants’ initial beliefs about the advisor’s ex-
pertise from their bets on the advisor. We can then examine
whether these beliefs are optimistically biased. Furthermore, the
Bayesian Learning model and the Confirmation Bias model make
different assumptions about how participants update their beliefs.
By evaluating which model better fit participants’ responses, we
can assess which update rule best approximates participants’ learn-
ing.

We fit both models to each participant’s data to obtain the
maximum a posteriori (MAP), or “best-fit,” estimates of the model
parameters (#, $, and *) for that participant. The average best-fit
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Figure 3. Comparison between participants’ behavioral data and model simulations. On each time period,
participants had to bet for or against an advisor’s prediction. Participants performed repeated trials with 3
advisors, with accuracies of 75%, 50%, and 25% respectively. (A) Proportion of time periods on which
participants bet for each advisor’s prediction (pFOR), averaged across trials and (B) as a function of time period.
Error bars and shading denote SEM. (C–D) Data generated by simulating the Confirmation Bias model with the
best-fit model parameters over 500 iterations. (E–F) Data generated by simulating the Bayesian Learning model
with the best-fit model parameters over 500 iterations. See the online article for the color version of this figure.
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values of * were 7.97 (SE ! 0.84) and 11.23 (SE ! 1.13) when
participants’ data were fit to the Confirmation Bias and Bayesian
Learning model respectively (Fig. S5). A * value in this range
suggests that the average participant adopted a “soft-maximizing”
choice strategy, such that the probability of betting for an advisor’s
prediction was weighted by the estimate of the advisor’s accuracy
(Fig. S4, see Analysis of participants’ betting strategies in supple-
mental materials). This betting strategy is consistent with findings
indicating that people rarely adopt a maximizing strategy (i.e.,
always choosing the option with higher probability of reward),
despite it being the strategy that will earn them the most reward
(Erev & Barron, 2005).

Next, we tested whether participants had optimistic initial be-
liefs about advisors’ expertise. When we fit the models to partic-
ipants’ bets, both models fit participants’ bets better when initial-
ized with prior distributions that were optimistic (e.g., Figure 4C
and 4D). That is, the best-fit values of # were often higher than
that of $ (Figure 4A and 4B). Given each participant’s best-fit
values of # and $, we can compute the mean estimate of that

participant’s initial beliefs about advisor expertise, #̂1. For both
models, #̂1 was credibly above 0.5 (Confirmation Bias model:
M ! 0.62, 95% HDI [0.55, 0.70]); Bayesian Learning model: M !
0.59, 95% HDI [0.56, 0.65], Figure 4E and 4F), suggesting that
optimistic initial beliefs indeed biased participants’ learning. As
the best-fit estimates of the initial beliefs could potentially be
biased by later trials, we repeated this analysis fitting the models
to only the first 12 trials of each advisor. The analysis yielded
estimates that were near identical to that when the models were fit
to all trials (Table S2).

We then asked whether participants exhibited confirmation bias
when updating their beliefs by comparing the Bayesian Learning
Model and the Confirmation Bias Model on how well they account
for participants’ bets. For each model, we computed the corrected
average likelihood per trial, which denotes an unbiased estimate of
the average likelihood of predicting a new data point given the
model. We found that the Confirmation Bias model provided
the better fit to most participants’ data (19 of 26). Furthermore, the
corrected average likelihood per trial was higher for the Confir-

Figure 4. Majority of participants had optimistic priors about advisors’ expertise. We fit the two models to find
the MAP estimates of the model parameters for each participant. The MAP estimates of # and $ are plotted on
the left for (A) the Confirmation Bias Model, and (B) the Bayesian Learning Model. Each dot represents a
participant. The black dashed line indicates values of # and $ that give prior distributions that are not skewed
(i.e., #̂1 ! 0.5). Points above the dashed line correspond to “optimistic priors” (#̂1 % 0.5), whereas points below
the dashed line correspond to “pessimistic priors” (#̂1 & 0.5). For both models, the best-fit priors were optimistic
for the majority of the participants. Plotted in the middle are the Beta distributions defined by (C) # ! 3.6 and
$ ! 2.7 and (D) # ! 3.8 and $ ! 2.4. These illustrate the estimated prior distribution of a particular participant
(red/grey dot in left panel) when fitting to the Confirmation Bias model and Bayesian Learning model
respectively. Plotted on the right are the average estimates of #̂1 for the (E) the Confirmation Bias Model and
(F) the Bayesian Learning model. Error bars indicate SEM. See the online article for the color version of this
figure.
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mation Bias model than the Bayesian Leaning model (MCB-BL !
0.03, 95% HDI [0.01, 0.05]; Confirmation Bias Model: M ! 0.65,
95% HDI [0.60, 0.70]; Bayesian Learning Model: M ! 0.62, 95%
HDI [0.58, 0.66]), with a medium effect size of 0.61 (95% HDI
[0.16, 1.06]). The results from the model-based analyses are sum-
marized in Table 1. These results indicate that the Confirmation
Bias model provides a better account of participants’ learning
process, and suggest that participants weighted information con-
sistent with their beliefs more than information inconsistent with
their beliefs.

We then simulated the two models performing the Advisor
Evaluation phase (Methods). These simulations provide us with
the pattern of behavior we would have observed if participants’
behavior was perfectly described by the models. We found that the
simulated behavior of the Confirmation Bias model provided a
better match to participants’ data (Figure 3C and 3D). In particular,
the Confirmation Bias model—like participants themselves—bet
for the 50% advisor’s predictions on more than 50% of the time
periods, and bet for the 75% advisor’s predictions more than they
bet against the 25% advisor’s predictions. In contrast, the Bayesian
Learning model underestimated the bets for the 75% and 50%
advisors. Furthermore, while the Confirmation Bias model exhib-
ited persistent optimism in betting for the 50% advisor, the Bayes-
ian Learning model is equally likely to bet for or against the 50%
advisor after 20 time periods.

Taken together, our results suggest that both optimistic initial
beliefs and confirmation bias contribute to learning optimistic
estimates of advisors’ expertise. Next, we examined whether these
optimistic estimates biased subsequent advice taking in the Joint
Prediction Phase.

Joint prediction phase. Results from the Advisor Evaluation
Phase suggest that participants were biased in their estimates of

advisors’ accuracy at predicting the stock. Do these biases influ-
ence whether participants take advisors’ recommendations when
predicting the fluctuations of the stocks themselves? For each
advisor, we calculated the proportion of trials on which partici-
pants followed or went against the advisor’s recommendation.
Participants did indeed follow the recommendation of the 50%
advisor more often than chance (M ! 68%, 95% HDI [0.59, 0.79]),
providing further evidence that they overestimated the expertise of
the 50% advisor and thought that he provided useful information.
Participants were also more likely to follow the 75% advisor’s
recommendation than they were to go against the 25% advisor’s
recommendation (M ! 7%, 95% HDI [3%, 10%]), demonstrating
an optimistic bias in advice utilization that parallels the optimistic
bias in learning about advisors.

Participants could draw from two distinct sources of information
when making their predictions—the trend of the stock based on its
past performance (p), and the recommendation from an advisor. To
maximize earnings in the task, participants should weight infor-
mation based on relative accuracy. In particular, if an advisor was
at chance at predicting the stock, the reward maximizing strategy
would be to ignore that advisor’s recommendation and rely solely
on p. To examine how participants weight each piece of informa-
tion, we ran a mixed effects logistic regression to predict partici-
pant’s choices with p and the recommendations of each advisor as
predictor variables. Trial-by-trial estimates of p were again gen-
erated by fitting the Bayesian Learning model to the stock out-
comes. We found that p was a significant predictor of participants’
predictions ($ ! 0.37, 95% CI [0.29, 0.45], z ! 9.9, p & .001),
suggesting that participants used the stock’s past performance
when making predictions. Participants positively weighted the
advice of the 50% advisor ($ ! 0.45, 95% CI [0.39, 0.51], z !
15.2, p & .001). Given that the 50% advisor provided no useful
information, participants should not have relied on this advisor.
Their optimism in doing so was thus not only irrational, but
materially costly in that it reduced their earnings in the task.

Participants positively weighted the recommendation of the
75% advisor ($ ! 1.42, 95% CI [1.32, 1.52], z ! 28.7, p & .001)
and negatively weighted the recommendation of the 25% advisor
($ ! "0.97, 95% CI ["1.05, "0.90], z ! "26.0, p & .001),
demonstrating that participants’ weighting of advice was depen-
dent on the expertise of the advisor. A second mixed model logistic
regression found a significant Advisor x Advice interaction ($ !
0.84, 95% CI [0.63, 1.01], z ! 8.04, p & .001), indicating that
participants were more likely to follow the 75% advisor’s advice
than they were to go against the 25% advisor’s advice. Again, this
reflects an irrational optimism bias in their perceptions of advisor
expertise.

Explicit ratings. At the end of the experiment, participants
estimated the percentage of time periods on which each advisor
was accurate at predicting the stock. Participants’ explicit ratings
of the 75% and 50% advisor were indeed optimistic (75% advisor:
M ! 81%, 95% HDI [78%, 87%]; 50% advisor: M ! 58%, 95%
HDI [53%, 61%]) while their rating of the 25% advisor was not
credibly different from 25% (M ! 21%, 95% HDI [14%, 26%]).

Discussion

In Experiment 1, participants learned about the expertise of
different financial advisors, and made predictions about the price

Table 1
Experiment 1 Model-Fitting Results

MAP estimate

Parameter
Confirmation bias

model
Bayesian learning

model

# 3.23 (.51) 3.76 (.37)
$ 1.96 (.28) 2.63 (.26)
* 7.97 (.84) 11.23 (1.13)
#̂1 .62 [.55, .70] .61 [.55, .65]

Model comparison

AIC 94.5 (7.5) 103.6 (6.0)
# of best-fit participants 19 7
Corrected avg lik per trial .65 [.60, .70] .62 [.58, .66]
,CB-BL .03 [.01, .05]
effect size .61 [.16, 1.06]

Note. We fit the two models to find the maximum a posteriori estimates
(MAP) of the model parameters. For each participant, we fit the parameters
that define their initial beliefs about the advisor (# and $), and the logistic
function gain parameter *. The table shows the average estimates of the
model parameters. The mean estimate of #̂1 was optimistic for both the
confirmation bias model and the Bayesian learning model. We compared
the two models based on AIC and the corrected average likelihood per
Trial. For statistical inference, we used robust Bayesian estimation to
estimate the mean difference in corrected average likelihood per trial of the
two models (,CB-BL). Also reported is the effect size when comparing
,CB-BL to 0. Parentheses indicate standard error of the mean, while square
brackets denote 95% HDI of the corresponding posterior distribution.
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fluctuation of a stock after hearing recommendations from the
same advisors. While participants were sensitive to the relative
accuracy of advisors and weighted advice accordingly, they were
overly optimistic in their estimates of advisor’s expertise, and
relied on advisors more than warranted by the advisors’ past
performance. In particular, when presented with an advisor whose
past accuracy was no better than chance, participants nonetheless
believed that the advisor was meaningfully accurate and relied on
this advisor’s recommendations when making stock predictions
themselves, even when doing so incurred a financial cost. Further-
more, participants credited an accurate advisor more than they
penalized an equally inaccurate advisor, both in their beliefs about
those advisors’ accuracy, and in their willingness to take those
advisors’ recommendations when making predictions.

Using computational models, we demonstrated that participants’
optimism reflected both optimistic initial beliefs and confirmation
bias when updating those beliefs. Both components are necessary
for the optimistic estimates to persist. If participants’ initial beliefs
were not optimistic, confirmation bias alone would not lead to
systematically biased estimates. Similarly, if participants had op-
timistic initial beliefs but updated them in a statistically optimal
manner, their estimates would converge on the advisor’s true
accuracy over time. Confirmation bias, however, meant that their
optimistic initial beliefs were resistant to change despite repeated
interactions with the advisor. These results are consistent with the
other work demonstrating that expectancies influence impression
formation (Bodenhausen, 1988; Hamilton, Sherman, & Ruvolo,
1990), visual perception (Summerfield & Egner, 2009), and even
the sensation of pain (Atlas & Wager, 2012). Our study adds to this
literature by breaking down expectancy effects into two separate
components—initial expectations and confirmation bias, and for-
malizing each in a probabilistic model.

Our results might explain why “financial gurus” continue to
attract a wide following and drive investment behavior, despite
there being limited evidence that they can successfully predict the
market (Engelberg, Sasseville, & Williams, 2012). Our results
suggest that investors have inflated perceptions about the expertise
of financial gurus, perceptions that are resistant to change due to
confirmation bias. If a financial guru was highly inaccurate (a
la our “25% advisor”), investors would likely catch on. How-
ever, if a financial guru has an accuracy that hovers around
chance, optimistic initial beliefs and confirmation bias can lead
investors to maintain excessive optimism about the guru’s ex-
pertise.

Experiment 2

If optimistic initial beliefs indeed drive unrealistic optimism in
advice-taking, manipulating participants’ beliefs could mitigate or
reverse these biases. In particular, our model suggests that partic-
ipants who hold well-calibrated beliefs about advisors should not
exhibit subsequent biases in their learning. In Experiment 2, we
tested this prediction by manipulating participants’ initial beliefs
about two advisors who in fact performed at chance in predicting
a stock’s performance. We then observed how these expectations
influenced participants’ subsequent estimates of the advisors’ ex-
pertise.

Method

Participants. Thirty participants were recruited from the
Stanford community (14 male, 16 female, ages 19–49, mean
age ! 26.3). All participants provided written, informed consent
prior to the start of the study. All experimental procedures were
approved by the Stanford Institutional Review Board. Participants
were paid up to $16 depending on their performance on the task.

Experimental task and design. Participants performed a
variant of the Financial Advice Choice Task. Unlike in Experiment
1, participants encountered four (not three) financial advisors.
They first completed 112 time periods of the Stock Prediction
phase. Following this, they were introduced to the four financial
advisors. Each advisor was associated with a star rating. Partici-
pants were told that these ratings were based on the advisors’ past
performance in making correct predictions about the stock. To
ensure that participants remembered the ratings, we had them
perform a recall task in which they were presented with the
photograph of an advisor and had to indicate the associated rating.
Participants had to make a correct response on each advisor for 8
consecutive trials before they could proceed to the Advisor Eval-
uation phase. Participants performed 112 time periods (28 with
each advisor) of the Advisor Evaluation phase. The 4-star advisor
was accurate on 75% of the time periods while the 1-star advisor
was accurate on 25% of the time periods. The 3-star and 2-star
advisors were both accurate on 50% of the time periods. Partici-
pants then performed 112 time periods of the Joint Prediction
phase, in which they made predictions about the stock with a
recommendation from one of the advisors (28 time periods with
each advisor). At the end of the experiment, participants’ were
asked how accurate (0 "100%) they thought each advisor was at
making predictions about the stock. Face stimuli were drawn from
the same database as Experiment 1 and consisted of male Cauca-
sian faces posing calm expressions with mouth closed and eyes
gazing straight ahead.

Learning about advisors’ expertise. Similar to Experiment
1, we calculated the proportion of time periods on which partici-
pants bet for each advisor’s predictions in the Advisor Evaluation
phase. To ensure that participants were able to distinguish between
the most accurate advisor and the least accurate advisor, we first
examined whether they bet for the 4-star advisor more than the
1-star advisor. Following this, we examined whether they bet for
the 3-star advisor more than the 2-star advisor. The 3-star advisor
and 2-star advisors were both at chance at predicting the stock,
such that any differences in participants’ evaluations of them were
due to biased initial beliefs about each advisor, not their actual
performance.

Computational modeling. We modeled participants’ bets in
the Advisor Evaluation phase using both the Bayesian Learning
model and the Confirmation Bias model. The model fitting pro-
cedure was identical to Experiment 1, except that instead of fitting
one initial belief distribution for all advisors, we fit a separate
belief distribution for each of the four advisors. That is, we fit
separate values of # and $ for each advisor, reflecting that partic-
ipants have different initial beliefs about each advisor. * remains a
participant-specific free parameter (i.e., one value for each partic-
ipant). Again, we compared the model fits of the Bayesian Learn-
ing model and the Confirmation Bias model based on each model’s
corrected average likelihood per trial. Using the best-fitting pa-
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rameters, we simulated the models performing the Advisor Eval-
uation phase. For more details about the models and model-fitting
procedure, see the Methods section for Experiment 1.

Analysis of the Joint Prediction phase. In the Joint Predic-
tion phase, we examined how participants weighted each advisor’s
recommendation when making stock predictions. We first ran a
mixed effects logistic regression model that predicted participants’
stock predictions from p and the recommendation from each
advisor. We then ran a second regression to specifically test
whether participants weighted the 3-star advisor’s recommenda-
tion more than the 2-star advisor’s recommendation. In both the
Stock Prediction Phase and the Joint Prediction Phase, we applied
the Bayesian Learning model to estimate p from the history of
stock outcomes.

Results

Stock prediction phase. Participants correctly predicted the
price fluctuation of the stock on 56% (95% HDI [53%, 58%]) of
the time periods. On average, their predictions were consistent
with the stock trend on 67% of the time periods (95% HDI [63%
69%]). The stock trend predicted participants’ predictions ($ !
0.97, 95% CI [0.86, 1.05], z ! 19.1, p & .001), suggesting again
that participants were able to track the stock trend when making
their predictions.

Advisor evaluation phase. Participants tended to bet for the
predictions of the 4-star advisor, who was accurate on 75% of the
time periods (M ! 90%, 95% HDI [85%, 100%]), and against
the predictions of the 1-star advisor, who was accurate on 25% of
the time periods (M ! 20%, 95% HDI [10%, 27%]). The 3-star
and 2-star advisors were equally accurate on the task (50% accu-
racy), but participants bet for the 3-star advisor’s predictions
credibly more than they did for the 2-star advisor’s predictions
(MDiff ! 34%, 95% HDI [18%, 51%]). While participants bet on
3-star advisor’s prediction on more than 50% of the time periods
(M ! 76%, 95% HDI [69%, 84%]), their bets on the 2-star
advisor’s prediction were not credibly different from chance (M !
42%, 95% HDI [31%, 52%]). These results suggest that partici-
pants’ initial beliefs biased their estimates of the advisors’ exper-
tise (Figure 5A and 5D).

To examine how these beliefs interacted with participants’
learning, we fit the Bayesian Learning and Confirmation Bias
models to participants’ bets. Unlike in Experiment 1, we fit a
different initial belief distribution to each advisor (i.e., different
values for # and $), reflecting our prediction that the star ratings
would bias participants’ initial beliefs. As was the case in Exper-
iment 1, the Confirmation Bias model was the better-fitting model
for the majority of the participants (27 out of 30). The corrected
average likelihood per trial of the Confirmation Bias model was
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Figure 5. Experiment 2 Results. (A) Proportion of time periods on which participants bet for each advisor’s
prediction (pFOR), averaged across trials and (B) as a function of time period. Error bars and shading denote
SEM. (C–D) Data generated by simulating the Confirmation Bias model with the best-fit model parameters over
500 iterations. (E–F) Data generated by simulating the Bayesian Learning model with the best-fit model
parameters over 500 iterations. See the online article for the color version of this figure.
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higher than that of the Bayesian Learning model (MDiff ! 0.04,
95% HDI [0.03, 0.06]; Confirmation Bias Model: M ! 0.64, 95%
HDI [0.59, 0.69]; Bayesian Learning Model: M ! 0.59, 95% HDI
[0.56, 0.63]), with a large effect size of 0.93 (95% HDI [0.49,
1.39]). When we simulated the models performing the task (Figure
5B, 5C, 5E, and 5F), the behavior of the Confirmation Bias Model
matched participants’ data better than that of the Bayesian Learn-
ing model. Despite being simulated with the best-fit initial belief
distribution, the Bayesian Learning model underestimated partic-
ipants’ bets for the 3-star advisor and overestimated participants’
bets for the 2-star advisor.

The best-fitting model parameters of the Confirmation Bias
model suggest that participants were optimistic about the 4-star
(M ! 0.72, 95% HDI [0.70, 0.80]) and 3-star advisors (M ! 0.69,
95% HDI [0.64, 0.76]), and pessimistic about the 1-star advisor
(M ! 0.43, 95% HDI [0.36, 0.48]). Participants’ initial expecta-
tions about the 2-star advisor were not credibly different from
chance (M ! 0.45, 95% HDI [0.36, 0.53]), and were credibly
lower than that for the 3-star advisor (MDiff ! "0.25, 95% HDI
["0.37, "0.14]). The results from the model-based analyses are
summarized in Table 2, and were again very similar when the
models were fitted to just the first 12 trials with each advisor (Fig.
S2). Together, our results suggest that the star ratings biased
participants’ initial expectations about each advisor’s expertise,
which then led to differences in how they subsequently learned
about the advisors.

Joint prediction phase. Participants followed the recommen-
dations of the 3-star advisor (M ! 74%, 95% HDI [67%, 80%])
more often they followed the recommendations of the 2-star ad-
visor (M ! 48%, 95% HDI [38%, 58%]; MDiff: 26%, 95% HDI
[11%, 39%]). We ran a mixed effects logistic regression to exam-
ine how participants weighted their own estimate of the stock trend
and the recommendations from each advisor when making their
predictions. The stock trend was positively associated with their
predictions ($ ! 0.52, 95% CI [0.44, 0.62], z ! 12.15, p & .001),
as was the recommendation of the 4-star advisor ($ ! 1.04, 95%
CI [0.93, 1.17], z ! 18.76, p & .001). In contrast, the 1-star
advisor’s recommendation was negatively associated with partic-
ipants’ predictions ($ ! "0.50, 95% CI ["0.58, "0.42],
z ! "12.5, p & .001). The 3-star advisor’s recommendation was
also positively associated with participants’ predictions ($ ! 0.55,
95% CI [0.48, 0.63], z ! 13.52, p & .001), but the 2-star advisor’s
recommendation was not ($ ! "0.04, 95% CI ["0.11, 0.33],
z ! "1.12, p ! .263). In other words, participants relied on the
3-star advisor’s recommendations when making their stock pre-
dictions, while ignoring the 2-star advisor’s recommendation, even
though both advisors had the same (chance) accuracy.

Explicit ratings. At the end of the experiment, participants
were asked to estimate the percentage of time periods on which
each advisor was accurate at predicting the stock. Even though the
3-star and 2-star advisors were both at chance at predicting the
stock throughout the Advisor Evaluation and Joint Prediction
phases, participants rated the 3-star advisor as being better than
chance (M ! 57.4%, 95% HDI [53%, 62%]), but the 2-star advisor
as being not different from chance (M ! 50.4%, 95% HDI [45%,
55%]).

Discussion

In Experiment 2, we manipulated participants’ initial beliefs
about an advisor’s expertise by providing them with star ratings
that supposedly reflected the advisor’s past success in predicting
the stock. Using computational models, we showed that differ-
ences in initial beliefs about advisors’ expertise exerted persistent
downstream effects on how participants learned about advisors and
how they weighed their recommendation when making stock pre-
dictions. In particular, participants perceived a 3-star advisor as
more accurate, and were more willing to utilize his advice, than a
2-star advisor, when in fact both advisors performed at chance.

These results highlight the contribution of optimistic initial
beliefs to the unrealistic optimism in advice taking. Specifically,
we found evidence of overly optimistic advice taking when par-
ticipants were led to have optimistic initial beliefs (i.e., the 3-star
advisor), but not when participants’ initial beliefs were less opti-
mistic (i.e., the 2-star advisor). Replicating the results from Ex-
periment 1, the Confirmation Bias model provided a better fit to
participants’ bets than the Bayesian Learning model. Despite start-
ing with different initial beliefs for the 3-star and 2-star advisors,
the Bayesian Learning model’s estimate for both advisors were
roughly the same by the end of the Advisor Evaluation phase. This
means that, if participants had updated their beliefs about the
advisor’s expertise in a Bayesian optimal manner, their experience
with the advisor would have “overwritten” their initial beliefs,
allowing them to arrive at an accurate estimate of each advisor’s
expertise. In contrast, in the Confirmation Bias model—and in

Table 2
Experiment 2 Model-Fitting Results

MAP estimate

Parameter
Confirmation bias

model
Bayesian learning

model

4-star # 4.22 (.15) 4.90 (.22)
4-star $ 1.69 (.18) 1.86 (.15)
4-star #̂1 .72 [.70, .80] .73 [.71, .79]
3-star # 4.21 (.19) 5.57 (.39)
3-star $ 1.83 (.17) 2.60 (.12)
3-star #̂1 .69 [.64, .76] .67 [.63, .71]
2-star # 2.64 (.29) 3.26 (.21)
2-star $ 3.32 (.31) 4.55 (.42)
2-star #̂1 .45 [.36, .53] .44 [.36, .50]
1-star # 2.95 (.33 2.89 (.27)
1-star $ 3.64 (.23) 4.18 (.26)
1-star #̂1 .43 [.36, .48] .41[.33, .47]
* 8.4 (.74) 11.11 (1.06)

Model comparison

AIC 103.4 (7.9) 118.9 (6.2)
# of best-fit participants 27 3
Corrected avg lik per trial .64 [.59, .69] .59 [.56, .63]
,CB-BL .044 [.025, .063]
Effect Size .929 [.487, 1.386]

Note. We fit the two models to find the MAP estimates of the model
parameters. For each participant, we fit the parameters that define their
initial beliefs about each advisor (# and $), and the logistic function gain
parameter *. The table shows the average estimates of the model param-
eters. We compared the two models based on AIC and the corrected
average likelihood per trial. For statistical inference, we used robust
Bayesian estimation to estimate the mean difference in corrected average
likelihood per trial of the two models (,CB-BL). Also reported is the effect
size when comparing ,CB-BL to 0. Parentheses indicate standard error of
the mean, while square brackets denote 95% HDI of the corresponding
posterior distribution.
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participants’ actual performance—initial beliefs persisted through-
out the task, resulting in different estimates of expertise between
the 3-star and 2-star advisors.

One heartening implication of the current results is that unreal-
istic optimism in advice-taking need not always occur. If partici-
pants have well-calibrated beliefs about an advisor, they will arrive
at a relatively accurate estimate of the advisors’ expertise, and
weight their advice accordingly. Unfortunately, in most real-world
decision-making scenarios, advisors are incentivized to enhance
their perceived expertise to maximize the likelihood that decision-
makers will heed their advice. How then, can decision-makers
obtain an accurate expectation of advisor’s expertise? One poten-
tial solution is to rely on crowd-sourced ratings, such as those used
by Yelp and Amazon, as a prior on an advisor’s expertise. One
might expect that past decision-makers’ estimates would converge
on an advisors’ true expertise, allowing future decision-makers to
avoid optimism bias when encountering that advisor. Alterna-
tively, if past decision-makers retain overly rosy assessments of
advisors, their feedback could “spread” optimism bias to future
decision-makers. In Experiment 3, we examined these possibilities
by examining expertise judgments across “generations” of decision-
makers.

Experiment 3

Websites such as Yelp, TripAdvisor, Rotten Tomatoes, and Ama-
zon aggregate user ratings on restaurants, hotels, movies, products,
and services. In recent years, several websites have begun to adopt a
similar system to rate financial service providers. For example, Wal-
letHub.com allows users to give a star rating to financial advisors
based on their experience with them. These websites hope to arrive at
accurate estimates by pooling over many individual estimates. In
Experiment 3, we examined how such crowd-sourced ratings influ-
ence participants’ learning about an advisor’s expertise and utilization
of the advisor’s advice. A first group of participants performed the
three phases of the Financial Advice Choice task and provided ratings
on how accurate each advisor was. These ratings were then averaged
and presented to a second group of participants prior to performing the
same task. Previous work suggests that when aggregating estimates
over many individuals, the average estimate can be remarkably close
to the true values (Galton, 1907; Zarnowitz, 1984), a phenomenon
known as “the wisdom of the crowd” (Surowiecki, 2005). If aggre-
gated crowd-source ratings generate an accurate estimate of advisors’
expertise, providing these ratings to subsequent decision-makers
could help them calibrate their initial expectations about advisors and
avoid optimism bias. However, if the crowd-source ratings are opti-
mistically biased, they could propagate that bias to subsequent
decision-makers. This would be akin to the phenomenon of “infor-
mation cascades,” in which decision-makers’ choices are biased by
having observed the choices of other decision-makers (Anderson &
Holt, 1997).

Method

Participants. We recruited 100 participants (58 male, 41 fe-
male, 1 did not indicate sex, ages 19 to 61, mean age ! 32.56) on
Amazon Mechanical Turk (AMT). Fourteen participants were
excluded for missing more than 10% of the trials (n ! 4), failing
an attention check question (n ! 9) or for only pressing one button

throughout the task (n ! 1). We call this group Generation 1. We
recruited a second group of 100 participants on Amazon Mechan-
ical Turk (52 male, 46 female, 2 did not indicate sex, ages 19–69,
mean age ! 33.26). Eight of these participants were excluded for
missing more than 10% of the trials (n ! 4) or for failing the
attention check question (n ! 4). We call this second group
Generation 2. For both generations, the duration of the task was
around 20 min. Participants were compensated $1.00 for their time
and could earn a bonus of up to $3.50 depending on their perfor-
mance on the task. We increased the planned sample size consid-
erably due to the smaller number of trials, and because prior
experience with learning experiments on the AMT platform sug-
gested to us that there would be a larger proportion of the sample
who would fail to learn the task. To ensure data quality, we
recruited only participants with approval ratings (i.e., HIT ap-
proval ratings) of greater than 95% on the Amazon Mechanical
Turk interface. All experimental procedures were approved by the
Stanford Institutional Review Board.

Generation 1. Participants performed a shorter version of the
FAC task, in which there were 36 time periods in the Stock
Prediction phase, 60 time periods in the Advisor Evaluation phase
(20 with each advisor), and 60 time periods in the Joint Prediction
phase (20 with each advisor). As in Experiment 1, participants
encountered three advisors—one who was 75% accurate, one who
was 50% accurate and one who was 25% accurate. For each
participant, the photo representing each advisor was randomly
selected from a stimulus set of 18 photos. Face stimuli were drawn
from the same database as Experiment 1 and consisted of male
Caucasian faces posing calm expressions with mouth closed and
eyes gazing straight ahead. At the end of the task, participants were
presented with six photos, and were told to rate the three advisors
that they encountered in the task. Participants could give each
advisor a star rating ranging from 1 star to 5 stars (integer values
only). Data from participants who did not rate the three advisors
they encountered or who rated more than or less than 3 advisors
were discarded. Data from Generation 1 provided us with an
opportunity to examine a direct replication of Experiment 1. We
analyzed the data using the same procedures described in Exper-
iment 1.

Generation 2. Participants performed the same FAC task as
generation 1. However, prior to the start of the Advisor Evaluation
phase, participants were presented with a star rating for each of the
three advisors. These were the average ratings of a 75% advisor, a
50% advisor, and 25% made by Generation 1 participants. As
before, photographs were randomly paired with specific accuracy
levels. Participants were instructed to remember the ratings as they
would be quizzed on them shortly. Following this, participants
were given a memory test where they were presented with the
photo of one of the advisors and a choice of three possible ratings
associated with the advisor. If participants chose the correct rating,
they would move on to the next trial. If participants chose an
incorrect rating, they would be told that they were incorrect, and
given the correct answer before moving on to the next trial.
Participants performed 9 trials of the memory test (3 trials with each
advisor in a randomized order). Finally, participants performed an
attention check question, in which they were presented with the three
advisors and had to match each advisor to a rating. Participants who
failed to correctly match the ratings to the corresponding advisor were
allowed to proceed with the task, but their data were subsequently
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discarded. At the end of the experiment, participants were presented
with photos of six advisors, and had to rate, from 1–5 stars, the three
advisors whom they had encountered. Data from participants who did
not rate the three advisors they encountered or who rated more than or
less than 3 advisors were discarded.

The setup for generation 2 is similar to that in Experiment 2
reported above. In Experiment 2, we experimentally manipulated
two advisors with the same (chance) accuracy to have different star
ratings. In generation 2, the ratings were not experimenter-
generated but were instead obtained by averaging the ratings of
participants who had previously performed the task. Nevertheless,
generation 2 provided us with the opportunity to replicate our
findings in Experiment 2 that manipulating participants’ initial
expectations about an advisor can bias participants’ learning about
the advisor. Data from generation 2 were analyzed using the same
procedures described in Experiment 2.

Results

Generation 1. Data from Generation 1 replicated all key
findings from Experiment 1. In the Stock Prediction phase, par-
ticipants’ stock predictions were reliably predicted by the stock

trend ($ ! 0.47, 95% CI [0.16, 0.38], z ! 12.1, p & .001). In the
Advisor Evaluation phase, participants bet for the 50% advisor’s
prediction on more than 50% of the time periods (M ! 58%, 95%
HDI [54%, 64%]), suggesting that participants overestimated the
advisor’s expertise (Figure 6A and 6B). Participants also bet for
the 75% advisor more than they bet against the 25% advisor,
providing further evidence of an optimism bias when learning
about advisors (MDiff ! 9%, 95% HDI [5%, 13%]). The Confir-
mation Bias model again provided a better fit to participants’ data
than the Bayesian Learning model, and the best-fitting initial belief
distribution for both models were optimistic (Table S3).

In the Joint Prediction phase, participants followed the recom-
mendation of the 50% advisor on more than 50% of the time
periods (M ! 60%, 95% HDI [55%, 64%]), and followed the 75%
advisor’s recommendation more often than they went against the
25% advisor’s recommendation (M ! 18%, 95% HDI [14%,
22%]). A mixed effects logistic regression provided further evi-
dence that participants weighted the 50% advisor’s recommenda-
tion when making their own predictions ($ ! 0.40, 95% CI [0.29,
0.50], z ! 8.06, p & .001), and relied on the 75% advisor’s

Figure 6. Experiment 3 Results. (A) Proportion of time periods on which Generation 1 participants bet for each
advisor’s prediction (pFOR), averaged across trials and (B) as a function of time period. Error bars and shading
denote SEM. (C–D) Results from Generation 2 participants. See the online article for the color version of this
figure.
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recommendation more than they went against the 25% advisor’s
recommendation ($ ! 1.8, 95% CI [1.5, 2.2], z ! 11.7, p & .001).

At the end of the experiment, we asked participants to give each
of the advisors a star rating (out of 5 stars). On average, the 75%
advisor was rated 3.95 stars (95% HDI [3.78, 4.13]), the 50%
advisor was rated 2.97 stars (95% HDI [2.79, 3.14]), and
the 25% advisor was rated 1.98 stars (95% HDI [1.75, 2.15]).

Generation 2. Participants in Generation 2 were provided
with the average ratings of each advisor prior to the start of the
Advisor Evaluation phase. On average, participants bet for the
50% advisor’s prediction credibly more than 50% of the time
periods (M ! 65%, 95% HDI [60%, 70%]), suggesting that similar
to participants from Generation 1, participants in Generation 2
were optimistic about this advisor’s expertise. Participants bet for
the 75% advisor’s prediction on 90% (95% HDI [88%, 95%]) of
the time periods, and bet for the 25% advisor’s prediction on 15%
(95% HDI [5%, 20%]) of the time periods (Figure 6C and 6D). We
then fit the Confirmation Bias model to participants’ bets to
estimate participants’ initial beliefs about each advisor to examine
the influence of the star ratings (Table S4). The 2.97 star rating of
the 50% advisor led to an optimistic initial expectation about the
advisor’s expertise (M ! 0.63, 95% HDI [0.60, 0.66]), suggesting
that the star ratings propagated optimism about the 50% advisor
from Generation 1 to Generation 2. The 3.95 star rating of the 75%
advisor and 1.98 star rating of the 25% advisor, respectively, led to
optimistic (M ! 0.78, 95% HDI [0.76, 0.79]) and pessimistic
initial expectations (M ! 0.35, 95% HDI [0.32, 0.38]). The initial
expectations of the 75% advisor were also more extreme than
those of the 25% advisor (MDiff ! 0.10, 95% HDI [0.07, 0.13]).

In the Joint Prediction phase, participants weighted the 50%
advisor’s recommendation positively when making their predic-
tions ($ ! 0.70, 95% CI [0.60, 80], z ! 13.8, p & .001), indicating
that participants were again utilizing the advice of an advisor that
provided no useful information. Participants weighted the 75%
advisor’s recommendation positively more than they weighted the
25% advisor’s recommendation negatively ($ ! "2.1, 95% CI
["2.46, "1.72], z ! "11.1, p & .001), again reflecting an opti-
mistic bias in advice utilization.

At the end of the experiment, participants gave the 75% advisor
a rating of 3.88 (95% HDI [3.74, 4.04]), the 50% advisor a rating
of 2.68 (95% HDI [2.56, 2.84]) and the 25% advisor rating of 1.65
(95% HDI [1.45, 1.77]).

Discussion

Decision-makers increasingly rely on crowd-sourced ratings
when making decisions. In Experiment 3, we explored the influ-
ence of crowd-sourced ratings on perceptions of advisors’ exper-
tise in our task. One group of participants performed the task and
provided ratings for each of the advisors. These ratings were
averaged and passed to a second group of participants who then
performed the same task. We were particularly interested in in-
vestigating if the aggregated ratings would help correct for the
optimistic initial beliefs we observed in Experiment 1, such that
the second group of participants would start the task with well-
calibrated expectations and thus not exhibit excessive optimism in
their perceptions of the 50% advisor.

We had the first group of participants rate the advisors on a 1–5
star rating scale commonly used on websites that aggregate user

ratings (e.g., Yelp, Amazon, Wallethub). Although we do not
know how participants would map the star ratings to specific levels
of advisor accuracy, we can measure the effect of the ratings by
using the Confirmation Bias model to estimate the initial expec-
tations of the second group of participants. We found that the
second group of participants had optimistic initial expectations of
the 75% advisor, but pessimistic initial expectations of the 25%
advisor, indicating that the star ratings biased participants’ initial
expectations. Initial expectations of the 50% advisor were opti-
mistic, indicating that instead of calibrating initial beliefs, crowd-
sourced ratings propagated optimistic expectations to a second
generation of participants. This finding is consistent with other
work that have examined the factors that undermine the accuracy
of aggregated estimates (Einhorn, Hogarth, & Klempner, 1977;
Lorenz, Rauhut, Schweitzer, & Helbing, 2011). Aggregated esti-
mates tend to be accurate only when there is little systematic bias
in the individual estimates. In our task, the first group of partici-
pants, on average, exhibited optimistic initial beliefs about the
advisors. Confirmation bias allowed that optimism to persist, de-
spite repeated experience to the contrary, resulting in overly opti-
mistic star ratings for the 50% advisor. These ratings then propa-
gated and exaggerated optimism bias in decision-makers who
received them.

A similar process is thought to underlie the formation of infor-
mation cascades, a type of herding behavior that has been exten-
sively studied in economics (Anderson & Holt, 1997; Bikhchan-
dani, Hirshleifer, & Welch, 1992; Chamley, 2003). An information
cascade occurs when individual decision-makers ignore their own
private information in favor of following the actions of others.
Whereas information cascades involve individual decision-makers
making sequential decisions, our finding that the expectations
engendered by the ratings from a previous group overwhelms
one’s own experience is reminisce of this process.

General Discussion

Decision-makers seek out advice because they believe that
others have relevant information or expertise that could be useful
to them (Harvey & Fischer, 1997). By combining what they know
with what others tell them, decision-makers can make more accu-
rate judgments (Bahrami et al., 2010; Yaniv, 2004), choose actions
with greater rewards (Biele, Rieskamp, Krugel, & Heekeren, 2011;
Li, Delgado, & Phelps, 2011), and avoid costly mistakes (Olsson
& Phelps, 2007). Following advice can be beneficial, but only if
the advice provides accurate and relevant information that can
guide decisions. Instead of improving the quality of decisions,
relying on bad advice can lead to inaccurate judgments (Bahrami
et al., 2010), a diminished ability to learn from feedback, and
perseveration of suboptimal behavior (Doll et al., 2009). To make
adaptive decisions, one has to learn what advice to follow and what
advice to ignore.

Although there has been a fair amount of research examining
how decision-makers take into account advisors’ expertise when
making decisions (Bonaccio & Dalal, 2006; Budescu & Rantilla,
2000; Toelch, Bach, & Dolan, 2014; Toelch, Bruce, Newson,
Richerson, & Reader, 2014), less is known about how decision-
makers learn about advisors’ expertise in the first place. Previous
work has primarily modeled the tracking of advisor expertise as a
Bayesian optimal process (Behrens et al., 2008; Boorman et al.,
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2013; Diaconescu et al., 2014; Shafto, Eaves, Navarro, & Perfors,
2012). Here, we document an optimism bias in how decision-
makers learn about the expertise of a financial advisor and in how
they decide to take those advisors’ suggestions. By fitting and
comparing computational models, we demonstrated that the opti-
mism bias is attributable to the combination of optimistic initial
beliefs and confirmation bias in how those beliefs are updated. Our
work extends the existing literature in two ways. First, unlike
previous work, we did not assume priors, but instead estimated
them from the data. This afforded us the tools to identify biases in
participants’ initial beliefs. Second, we formalized a model that
incorporated confirmation bias, such that expectation-consistent
information is weighted more than expectation inconsistent infor-
mation. Confirmation bias is a pervasive cognitive bias that has
been shown in many domains (Nickerson, 1998; Oswald & Gros-
jean, 2004). Our work demonstrates that confirmation bias influ-
ences how decision-makers track the expertise of their advisors
and has subsequent effects on advice-taking behavior.

Our model predicts that when decision-makers’ initial expecta-
tions are well calibrated, their estimate of an advisor’s expertise
will remain fairly accurate. The results from Experiment 2 con-
firmed this prediction. We explicitly manipulated participants’
expectations, and demonstrated that when participants had a less
optimistic initial belief about an advisor, they correctly recognized
an advisor as being at chance and did not utilize his advice in
making their predictions. These results highlight the importance of
calibrating decision-maker’s initial beliefs. In Experiment 3, we
investigated a popular method aimed at providing decision-makers
with accurate expectations—aggregated crowd sourced ratings
collected from past decision-makers. We found that although each
decision-maker rated the advisors independently, their ratings were
systematically biased. As a result, the aggregated ratings propa-
gated and likely enhanced the optimism bias to future decision-
makers.

Our task was set in a simplified and controlled setting—in
which advisors made binary recommendations and decision-
makers received immediate and explicit feedback about the advi-
sor’s performance. Would the current results generalize to more
realistic decision-making scenarios, where advisors can embellish
their recommendations and feedback is often delayed and com-
plex? We argue that the effects of expectations and confirmation
bias would be even stronger in such situations, as they leave
greater cognitive flexibility for decision-makers to “explain away”
the feedback to arrive at an expectation consistent conclusion
(Hamilton et al., 1990). That is, decision-makers would be able to
generate more excuses for why an advisor they had expected to be
accurate made an inaccurate prediction. This hypothesis can be
tested in future experiments, and would provide us with greater
insights into the cognitive operations that lead to confirmation
bias.

One likely reason why participants have optimistic initial ex-
pectations about advisor’s expertise is that the advisors in our task
were given the title of “financial advisor,” and participants might
have inferred from the title that the advisors had domain-specific
expertise in predicting stocks. Expert advisors are often given
credentials and described in years of experience, and a similar
inference might explain optimism in expert advisors in domains
beyond financial advice taking. Would participants be optimisti-
cally biased if the advisors had not been described as financial

advisors? Our speculation is that they would, though perhaps to a
smaller extent. A positivity bias has long been documented in the
person perception literature, whereby target individuals are pre-
dominantly evaluated positively in the absence of clear positive or
negative information (Bruner & Tagiuri, 1954; Klar & Giladi,
1997; Sears, 1983). This positivity bias has been found to influ-
ence the attribution of specific traits such as trustworthiness and
competence, emerging as early as 100 ms of viewing a target face
(Willis & Todorov, 2006), and is thought to have its origins early
in childhood (Boseovski, 2010). For example, studies with 3- to
4-year-olds have found that although children are able to distin-
guish the relative accuracies of informants, there remains a robust
bias to trust information provided by an informant who had been
inaccurate in the past (Jaswal, Croft, Setia, & Cole, 2010; Van-
derbilt, Heyman, & Liu, 2014). Having optimistic initial expecta-
tions of others is thought to be adaptive, as they encourage learning
from others and facilitate cooperation (Baier, 1986; Boseovski,
2010; Hardin, 1993). In contrast, a decision-maker who has pes-
simistic initial expectations of advisors would rarely heed advice,
and thus not benefit when an advisor has useful information to
offer.

Unrealistic optimism has been previously documented in the
context of an individual’s prediction about future events (Shep-
perd, Waters, Weinstein, & Klein, 2015; Weinstein, 1980). In
particular, people tend to overestimate the probability of positive
events and underestimate the probability of negative events hap-
pening to them. These optimistic estimates persist even in light of
new information indicating that they are miscalibrated (Armor &
Taylor, 2002; Weinstein & Klein, 1995), much like the unrealistic
optimism in advisors’ expertise reported in this paper. Unrealistic
optimism in oneself is thought to be similarly related to biased
initial expectations and updating (Gerrard, Gibbons, & Reis-
Bergan, 1999; Kuzmanovic & Rigoux, 2017; Sharot, Korn, &
Dolan, 2011; Weinstein, 1987), suggesting that the phenomenon
can be accounted for by the computational account presented in
this paper.

In most real-world advice-taking scenarios, both optimism about
oneself and optimism about others can lead to inflated perceptions
of advisor expertise and overreliance on advice. For example,
decision-makers may be particularly optimistic about the expertise
of advisors who provide them with favorable information (e.g.,
telling the decision-maker that a stock that the decision-maker has
a stake in will increase in value). In such cases, the optimistic
expectations about the advisors could derive from optimism about
gaining rewards as well as optimistic expectations about the ex-
pertise of advisors more broadly. In our task, participants were
rewarded for correctly predicting the stock price fluctuation (Stock
Prediction phase and Joint Prediction phase) or whether an advisor
would be accurate in his prediction (Advisor Evaluation phase). As
such, participants had no explicit motivation to want the advisors
to be accurate. This was a deliberate design decision to allow us to
disentangle optimism about others from optimism about the self.
Optimism about others is a less studied phenomenon, and our
study demonstrated that optimistic initial expectations about advi-
sors’ expertise can contribute to overreliance on advice, indepen-
dent of optimism about the self.

The mechanisms underlying the optimistic bias observed in the
current set of studies are basic cognitive processes that are likely to
impact advice-taking behavior beyond financial decision-making sce-
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narios. From health care professionals to political pundits, policy
advisors to sports commentators, advisors are often portrayed as
experts in their respective fields. Decision-makers are likely to have
optimistic expectations about these advisors, expectations that could
be wrong yet resistant to change. We believe that this research
highlights the importance of tabulating and making public quantita-
tive metrics of advisor accuracy, such that decision-makers can con-
sider them when deciding whether to utilize a piece of advice. Advi-
sors are often helpful, but knowing when they are not can help
decision-makers discern how to incorporate advice when making
choices.

Context

Across a variety of domains, people repeatedly rely on the
advice of “experts” who are no better than chance at making
accurate predictions. This behavior is puzzling, and incompatible
with the popular view of human social learning as statistically
optimal Bayesian inference. In this paper, we document an opti-
mism bias in how people learn about expert advisors, and demon-
strate that, with new modifications, existing models of learning can
be extended to account for the observed behavior. In doing so, we
provide an improved computational account of how people learn
from and about people, and explored possible strategies to curb
suboptimal advice taking. We hope to take the current work in
three directions: (1) investigate the relationship between biased
priors (as estimated by our computational models) and implicit
attitudes (as measured by the Implicit Association Test and other
implicit measures), (2) investigate the interaction between moti-
vation and expectation in advice-taking (e.g., how does wanting an
outcome influence the perception of an advisor offering favorable
advice?) (3) use our computational models to generate trial-by-trial
estimates of participants’ learning and regress these estimates
against neuroimaging data to search for neural correlates of biased
updating.
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