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In recent years, ideas from the computational field of reinforcement learning have revolutionized the study of learning in the brain,
famously providing new, precise theories of how dopamine affects learning in the basal ganglia. However, reinforcement learning
algorithms are notorious for not scaling well to multidimensional environments, as is required for real-world learning. We hypothesized
that the brain naturally reduces the dimensionality of real-world problems to only those dimensions that are relevant to predicting
reward, and conducted an experiment to assess by what algorithms and with what neural mechanisms this “representation learning”
process is realized in humans. Our results suggest that a bilateral attentional control network comprising the intraparietal sulcus,
precuneus, and dorsolateral prefrontal cortex is involved in selecting what dimensions are relevant to the task at hand, effectively
updating the task representation through trial and error. In this way, cortical attention mechanisms interact with learning in the basal
ganglia to solve the “curse of dimensionality” in reinforcement learning.
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Introduction
To make correct decisions, we must learn from past experiences.
Learning has long been conceptualized as the formation of associa-
tions among stimuli, actions, and outcomes—associations that can
then guide decision making in the presence of similar stimuli. But
how should stimuli be defined in complex, multidimensional, real-
world environments? Naïvely, it would seem optimal to learn about
all available stimuli, for example, all observable objects as defined by
their features (e.g., height, color, shape). However, it is often the case
that only a few dimensions are relevant to the performance of any
given task. Imagine standing on a street corner: if your task is to cross
the street, you will likely ignore the colors of the cars and concentrate
on their speed and distance; however, if your task is to hail a taxi, you
should take color into account and can ignore other aspects. Learn-
ing and basing decisions on only those dimensions that are relevant
to the task at hand improves performance, speeds learning, and sim-
plifies generalization to future situations.

The computational framework of reinforcement learning
(RL) has had a tremendous impact on our understanding of the
neural basis of trial-and-error learning and decision making.
Most notably, it offers a principled theory of how basal-ganglia
structures support decision making by learning the future reward
value of stimuli (or “states” in RL terminology) using prediction
errors that are conveyed by midbrain dopaminergic neurons
(Barto, 1995; Montague et al., 1996; Schultz et al., 1997; Niv and
Schoenbaum, 2008; Niv, 2009). However, the bulk of this work
has concentrated on learning about simple stimuli. When stimuli
are multidimensional, RL algorithms famously suffer from the
“curse of dimensionality,” becoming less efficient as the dimen-
sionality of the environment increases (Sutton and Barto, 1998).
One solution is to select a small subset of dimensions to learn
about. This process has been termed “representation learning” as
it is tantamount to selecting a suitable state representation for the
task (Gershman and Niv, 2010; Wilson and Niv, 2011).

Neurally, it is plausible that corticostriatal projections are
shaped so as to include only stimulus dimensions that are pre-
sumed to be relevant to the task at hand (Bar-Gad et al., 2000), for
instance by selective attention mechanisms (Corbetta and Shul-
man, 2002). Striatal circuits can also contribute to highlighting
some inputs and not others (Frank and Badre, 2012). Such atten-
tional filters, in turn, should be dynamically adjusted according
to the outcomes of ongoing decisions (Cañas and Jones, 2010;
Frank and Badre, 2012), forming a bidirectional interaction be-
tween representation learning and RL.

To study the neural basis of representation learning, we de-
signed a “dimensions task”—a multidimensional bandit task in
which only one of three dimensions (color, shape, or texture)
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determined reward. We scanned the brains of human partici-
pants as they played this task, changing the reward-relevant di-
mension frequently and fitting participants’ trial-by-trial choice
data to the predictions of different computational models of
learning. We then used the best model to generate regressors
corresponding to the dynamics of representation learning and to
search for neural areas that may be involved in this process.

Materials and Methods
Subjects. Thirty-four participants (20 females; age range, 18 –26 years;
mean age, 20.9 years; 1 participant was left handed) were recruited from
the Princeton University community. All participants gave informed
consent and were compensated for their time at a rate of $20/h (resulting
in payments of $35–50, with the majority of participants being paid $40).
Due to equipment failure, data for three participants were not complete
and so were not analyzed. Another three participants who showed excess
head movements (i.e., �4 mm in any direction) and six participants who
failed to perform the task reliably above chance levels (i.e., missed �50
trials and/or had an overall performance of �38% correct during the
functional scan, with the performance threshold calculated as the 95%
confidence interval around random performance) were discarded from
further analysis, leaving a total of 22 participants (15 females; age range,
18 –26 years; mean age, 21.1 years; all participants were right handed)
whose data are reported below. Study materials and procedures were
approved by the Princeton University Institutional Review Board.

Task. Figure 1A shows a schematic of the task. On each trial, partici-
pants were presented with three stimuli, each consisting of one feature on
each of the following three dimensions: shape (square, triangle, or circle);

color (red, green, or yellow); and texture (plaid, dots, or waves). The
participant’s task was to choose one stimulus on each trial, with the goal
of accumulating as many points as possible. After a stimulus was chosen,
the other two stimuli disappeared from the screen, and, after a variable
interstimulus interval (ISI), the outcome of the choice (either 1 or 0
points) appeared above the chosen stimulus. The outcome remained on
screen for 500 ms, after which a fixation cross was displayed on a blank
(black) screen for the duration of a variable intertrial interval (ITI).

Before performing the task, participants received on-screen instruc-
tions informing them that at any point only one of the three dimensions
(color, shape, or texture) was relevant to determining the probability of
winning a point, that one feature in the relevant dimension would result
in rewards more often than the others (the exact probability was not
mentioned), and that all rewards were probabilistic. Specifically, they
were told that “One stimulus is better in that it gives you 1 most of the
time (and 0 some of the time), the other two give you 0 most of the time (and
1 some of the time).” Participants were also instructed to respond quickly
and to try to get as many points as possible. They first practiced three games
in which the relevant dimension was instructed (one game in each dimen-
sion). They were then told that from now on they would not be instructed
about the relevant dimension, and the actual task commenced.

The task consisted of a series of “games,” each 15–25 (uniform distri-
bution) trials long. In each game, rewards were determined based only on
one “relevant” dimension (color, shape, or texture). Within this dimen-
sion there was one “target” feature—selecting the stimulus that had this
feature led to 1 point with 75% chance, and 0 points otherwise. The other
two features in the reward-relevant dimension were associated with only
a 25% chance of reward. The features in the two irrelevant dimensions

Figure 1. Task and behavioral results. A, Schematic of the dimensions task. Participants were presented with three different stimuli, each having a different feature along each one of the three
dimensions (shape, color, and texture). Participants then selected one of the stimuli and received binary reward feedback, winning 1 (depicted) or 0 points. After a short delay, a new trial began with
three new stimuli. B, Illustration of one game for one participant. Only the chosen stimulus is depicted for each of 10 consecutive trials, along with the outcome of each choice. C, Learning across
games and participants, for games in the first 500 trials. Plotted is the percentage of choices of the stimulus that contained the target feature, throughout the games. Dashed line, chance
performance; shaded area, SEM across participants. Learning in the 300 trials during functional imaging was similar, but the learning curve is less interpretable as games were truncated when a
performance criterion was reached (see Materials and Methods). Other measures of learning, such as the number of trials to criterion (mean � 17.00 for the 500 fast-paced trials; mean � 16.40 for
the slower-paced 300 trials; p � 0.09, paired t test), also suggest that performance in the two phases of the task was comparable. D, Percentage of games in which the stimulus containing the target
feature was chosen on 0 – 6 of the last 6 trials of each game, across participants and games in the first 500 fast-paced trials (black) and in the last 300 slower-paced trials (white). In �40% of the
games, participants consistently chose the stimulus that contained the correct feature (6 of 6 trials correct), evidencing that they had learned the identity of the target feature. In the rest of the games,
their performance correct was at chance (on average, only two trials containing the target stimulus, consistent with the participant “playing” on an incorrect dimension and only selecting the
stimulus containing the target feature by chance, that is, one-third of the time).
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were inconsequential to determining reward. The relevant dimension in
a particular game was always different from the relevant dimension in the
previous game (participants were not told this).

For all data reported here, game transitions were signaled to the par-
ticipant via a screen that declared that the previous game was over and a
new game with a new relevant dimension is beginning. Fifteen of the 22
participants first performed 500 fast-paced trials (ISI of 0.3 s or the reac-
tion time, the longer of the two; ITI of 0.3 s) outside the MRI scanner, and
another 500 fast-paced trials during the 12 min structural scan. In these
latter trials, game switches were not signaled. These unsignaled switch
data have been reported elsewhere (Wilson and Niv, 2011) and are not
analyzed further or reported here. The remaining seven participants per-
formed the first 500 fast-paced trials with signaled dimension changes
during the structural scan and did not perform the unsignaled switch
task. In all cases, the structural scan was followed by four functional scans
(see below), each consisting of 75 trials of the task with signaled dimen-
sion switches, with the timing of trials adjusted to the slow hemodynamic
response [ISI, 4.5–5.5 s (inclusive of the reaction time, uniform distribu-
tion); ITI, 4 –7 s (inclusive of outcome presentation time, uniform dis-
tribution)]. Throughout these 300 slower-paced trials, a criterion on
performance was imposed such that after six consecutive choices of the
stimulus with the target feature the game had a 50% likelihood of ending
on any trial. Otherwise, games ended after a uniformly drawn length of
15–25 trials. Throughout, participants were required to make their
choices within 1.5 s (3 s for the first participant). This response deadline
was identical in the fast-paced and slower-paced phases of the exper-
iment, and was imposed to invoke implicit decision making and RL
processes rather than slow, deliberative processes. Failure to make a
choice within the allotted time led to a time-out screen with the
message “too slow,” and then to the ITI and the next trial (these
missed trials were not counted toward the length of the game). Other
variants of the task using longer response deadlines (up to 5 s) showed
comparable results.

Our dimensions task combines elements from the Wisconsin Card
Sorting Task (WCST), widely used to study cognitive flexibility (Milner,
1963; Lyvers and Maltzman, 1991; Owen et al., 1993; van Spaendonck et
al., 1995; Ornstein et al., 2000; Lawrence et al., 2004; Monchi et al., 2004;
Buchsbaum et al., 2005; Bishara et al., 2010), and the weather prediction
task, a probabilistic categorization task that has been used to study and
compare implicit and explicit learning processes (Gluck et al., 2002;
Shohamy et al., 2004; Ashby and Maddox, 2005; Rodriguez et al.,
2006; Price, 2009). By focusing on only one relevant dimension and
frequent changes in that dimension, in combination with probabilis-
tic rewards, we better emulated real-world learning (Kruschke, 2006),

prolonged the learning process so as to allow a detailed computational
analysis of the dynamics of learning (see below), and ensured that
prediction errors occur on every trial (Niv and Schoenbaum, 2008).

Computational models. To analyze learning dynamics in our task, we
compared six qualitatively different computational models that reside on
a spectrum ranging from ostensibly suboptimal to nearly statistically
optimal solutions of the dimensions task (Fig. 2A). Below we describe
each model. We begin with the less optimal of the models (“naïve RL”)
and the most optimal of the models (“Bayesian learning”). These models
will bracket and provide baseline comparisons for the four intermediate
models that follow them.

Naı̈ve RL. This model learns values for each of the 27 compound
stimuli in the experiment using standard temporal difference (or Rescorla–
Wagner) learning (Rescorla and Wagner, 1972; Sutton and Barto, 1998).
Specifically, after choosing a stimulus, S (say, a green square with plaid
texture), and observing the reward for that choice, Rt � {0,1}, the
value of that stimulus, V( S), is updated according to the following:

Vnew�Schosen� � Vold�Schosen� � ��Rt � Vold�Schosen��, (1)

where � is a step-size or learning-rate parameter, and at the beginning of
each game all 27 values are initialized at 0. To select one of the three
stimuli available on each trial (S1, S2, S3), their current values are entered
into a softmax probabilistic choice function, as follows:

p�choose Si� �
e�V�Si�

�j�1

3
e�V�Sj�

, (2)

such that the inverse temperature parameter � sets the level of noise in
the decision process, with large � corresponding to low decision noise
and near-deterministic choice of the highest-value option, and small �
corresponding to high decision noise and nearly random decisions.

This model has two free parameters, � � {�, �}, which we fit to each
participant’s data separately (see below). The model is naïve in the sense
that it does not generalize between stimuli—what it learns about green
squares with plaid texture does not affect the value of other green stimuli,
at odds with the reward structure of the task. We thus used this model
only as a baseline or null model for comparison with other, more sensi-
ble, strategies.

Note that here, and in all other reinforcement-learning based models
we tested, values were initialized to 0. Given the instructions and experi-
ence with the task, one might assume that participants initialized their
predictions at the start of each game with an intermediate value, between
0 and 1 point. However, treating the initial value as a free parameter and

A B C..

Figure 2. Model fits. A, Average likelihood per trial (when predicting the participant’s choice on trial t given the choices and outcomes from the beginning of the game and up to trial t 	 1) for
each of the six models. The model that explained the data best was the fRL
decay model. Error bars indicate the SEM. Dashed line, chance performance. B, Predictive accuracy (average likelihood
per trial across games and participants) as a function of trial number within a game, for each of the models (colors are as in A; the hybrid model curve is almost completely obscured by that of the fRL
model). By definition, all models start at chance. The fRL
decay model predicted participants’ performance significantly better ( p � 0.05) than each of the other models from the second trial of
the game and onward (excluding the 24th trial when comparing with fRL and SH, and the last two trials when comparing with hybrid), predicting participants’ choices with �80% accuracy by trial
25. C, These results hold even when considering only unlearned games, that is, games in which the participant chose the stimulus containing the target feature on fewer than 4 of the last 6 trials.
Again, the predictions of the fRL
decay model were significantly better than those of the competing models from the second trial and onward (excluding the 24th trial when comparing with fRL
and hybrid, and the 19th, 21st, and last two trials when comparing with hybrid). Moreover, the model predicted participants’ behavior with �70% accuracy by trial 25, despite the fact that
participants’ performance was not different from chance with respect to choosing the stimulus containing the target feature ( p � 0.05 for all but two trials throughout the game). The predictions
of the Bayesian model, in contrast, were not statistically different from chance from trial 19 and onward, suggesting that this model did well in explaining participants’ behavior largely due to the
fact that both the model and participants learned the task. All data depicted are from the first 500 trials. Similar results were obtained when comparing models based on the 300 trials during the
functional scan; however, the performance criterion applied in those games obscures the differences between learned and unlearned games, as seen in B and C, and thus those data are not depicted.

Niv et al. • Reinforcement Learning Relies on Attention J. Neurosci., May 27, 2015 • 35(21):8145– 8157 • 8147



fitting it to the data of each participant separately resulted in initial values
that were close to 0 and no significant improvement of the performance
of the models in predicting participants’ behavior. The inverse Hessian of
the likelihood of the data with respect to this parameter also suggested
that the parameter was not well specified, in that large changes in initial
value had very little effect on the overall likelihood of the data. Thus, we
deemed the additional parameter not statistically justified, and used in-
stead the more parsimonious version of each of the models, with initial
values set (arbitrarily) at 0.

Bayesian learning. In contrast to the naïve RL model, the Bayesian
learning model uses statistically optimal Bayesian inference, together
with prior knowledge about the task as it was described to participants, to
infer the probability of reward for each available stimulus. Specifically,
the model tracks p(f � f ��D1:t	1), the probability that each one of the
nine features, f, is the target feature f � given D1:t	1 � {C1:t	1, R1:t	1}, the
data (choices and rewards) from the beginning of the game and up to
the current trial. The probability of each feature being the target feature is
initialized at 1/9 at the beginning of a game and is subsequently updated
after every trial according to Bayes’ rule, as follows:

p�f � f��D1:t)�p(Rt�f � f�, Ct)p(f � f��D1:t	1), (3)

where the first argument on the right-hand side is p � 0.75 or p � 0.25,
depending on the reward on the current trial and whether the current
choice Ct included f �.

This probability distribution can be used to determine the value of
choosing stimulus S as the probability of reward for choosing that stim-
ulus on the current trial t:

V�S� � p�Rt � 1�S, D1:t	1���
f�S

p(Rt � 1�f � f�, S) p(f � f��D1:t	1).

(4)

Here p(Rt � 1� f � f �, S) � 0.75 for features f contained in S, and p(Rt �
1� f � f �, S) � 0.25 for those that are not part of the evaluated stimulus.
This model can be thought of as an “ideal observer” model as it maintains
a full probability distribution over the identity of f � and updates this
distribution in a statistically optimal way. However, we note that for this
model and for all others, we use a “softly ideal” action selection policy, the
softmax policy described above. The model thus has only the softmax
inverse temperature parameter as a free parameter, � � {�}.

Feature RL (fRL). This model takes advantage of the fact that, in our
task, features (not whole stimuli) determine reward, and uses reinforce-
ment learning to learn the weights for each of the nine features. The value
of stimulus S is calculated as the sum of the weights of its features, W(f ),
as follows:

V�S� � �
f�S

W� f �, (5)

and the weights of the three features of a chosen stimulus are updated
according to the following:

Wnew�f � � Wold�f � � ��Rt � V�Schosen� � f � Schosen. (6)

Feature weights are initialized at 0 at the beginning of each game (as
mentioned above, fitting the initial value of weights did not improve fits
to the data or change any of the results). As before, action selection
proceeds via the softmax decision rule, and thus this model has two free
parameters, � � {�, �}.

Feature RL with decay. The models described above used all trials from
the beginning of a game effectively and did not suffer from “forgetting” of
any kind. However, this might not be the case in the human brain. To
account for forgetting, we developed a feature RL with decay
(fRL
decay) model that is identical to the fRL model described above,
except that on every trial the weights of features that did not occur in the
chosen stimulus are decayed to 0 with a rate, d, as follows:

Wnew�f � � �1 � d�Wold�f � � f�Schosen. (7)

The fRL
decay model thus has three free parameters, � � {�, d, �}.
(Here too, fitting two additional free parameters, the initial value of

feature weights at the beginning of games and the target for weight decay,
did not change the results qualitatively.)

Hybrid Bayesian–fRL model. This model combines the fRL model with
“dimensional attention weights” derived from the Bayesian model. That
is, Bayesian inference (as described above) is used to track p(f � f �), the
probability that each feature is the target feature. On each trial, these
probabilities are summed across all features of a dimension and are raised
to the power of 	 to derive dimensional attention weights, 
d, for each of
the dimensions:


d �
1

z� �f�d
p�f � f��D1:t	1��	

, (8)

where z normalizes 
d to sum up to 1. These dimensional weights are
then used for weighing features when calculating the value of each stim-
ulus, as follows:

V�S� � �
d�1

3

w�fd�
d, (9)

with fd being the feature in stimulus S in dimension d. Similarly, the
updating of feature weights for the chosen stimulus is weighed by dimen-
sional attention, as follows:

Wnew�fd� � Wold�fd� � ��R � V�Schosen��
d � f � Schosen.

(10)

Note, in contrast, that the fRL model weighs all features equally both in
choice [i.e., in calculating V( S)], and in learning. The hybrid model has
three free parameters, � � {�, 	, �}.

Serial hypothesis (SH) model. This final model, from Wilson and Niv
(2011), has a different flavor from the above models. Here we assume that
participants selectively attend to one feature at a time and, over the
course of several trials, test the hypothesis that the attended feature is the
correct feature. More concretely, when a participant chooses to attend to
a certain feature on trial, n, we assume that from that trial on, until he
decides to discard this hypothesis, he chooses the stimulus containing the
candidate feature with probability 1 	 � and chooses randomly other-
wise. After every trial, the participant performs a Bayesian hypothesis test
to determine whether to switch away from, or stick with, the current
hypothesis, based on the reward history since choosing this feature as a
candidate. This is done by computing the log ratio of the likelihood of the
candidate feature being the target and the likelihood that it is not the
target, as follows:

LR � log
p�f � f��Rt	n
1:t�

1 � p�f � f��Rt	n
1:t�
, (11)

where

p�f � f��Rt	n
1:t��p�Rt�f � f�� p�f � f��Rt	n
1:t	1�, (12)

which amounts to counting the rewards obtained on all trials in which
the stimulus containing the candidate feature was selected since trial n,
the trial in which the current hypothesis was selected. The log ratio is then
entered into a softmax function to determine the probability of switching
to a different (randomly chosen) target feature, as follows:

p�switch� �
1

1 � e��LR	 �. (13)

The free parameters of this model are thus � � {�, �, }. While this
model is simple to define, fitting its parameters is complicated by the fact
that at any given time it is not straightforward to know what hypothesis
(i.e., candidate feature) the participant is testing. However, it is possible
to infer a distribution over the different hypotheses using Bayesian infer-
ence and an optimal change point detection algorithm (for details, see
Wilson and Niv, 2011).

Model fitting. We used each participant’s trial-by-trial choice behavior
to fit the free parameters, �m, of each model, m (Table 1), and asked to
what extent each of the models explains the participant’s choices. Model
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likelihoods were based on assigning probabilities to the choices of each
participant on each of the T trials, as follows:

L� p(C1:T��m)��
t�1

T

p(Ct�D1:t	1, �m). (14)

Due to the differences in task parameters (ISI, ITI, and criterion) in the
500 prescan trials compared with the 300 functional scan trials, we fit the
parameters of each model to each participant’s prescan and functional-
scan data separately. To facilitate model fitting, we used a regularizing
prior that favored realistic values for the softmax inverse temperature
parameter � and maximum a posteriori (rather than maximum likeli-
hood) fitting (Daw, 2011). We optimized model parameters by minimiz-
ing the negative log posterior of the data given different settings of the
model parameters using the Matlab function fmincon. Parameters fit to
the functional scan trials were used to generate model-based regressors
for fMRI analysis (see below), whereas parameters fit to the prescan trials
were used to predict participants’ behavior for the purposes of model
comparison (see below). Table 1 summarizes the model parameters,
their mean value (and SD) from the fit to data, and the range constraints
and priors on each parameter.

Model comparison. To compare between the models based on their
predictive accuracy, we used leave-one-game-out cross-validation on the
500 prescan trials (comparisons based on the functional scan trials gave
similar results). In this method, for each participant, every model, and
each game, the model was fit to the participant’s choice data excluding
that game. The model, together with the maximum a posteriori param-
eters, was then used to assign likelihood to the trials of the left-out game.
This process was repeated for each game to obtain the total predictive
likelihood of the data. We then calculated the average likelihood per trial
for the model by dividing the total predictive likelihood by the number of
valid trials for that participant. The likelihood per trial is an intuitive
measure of how well the model predicts participants’ choices, with a
value of 1 indicating perfect prediction and 1/3 corresponding to chance
performance. We used this quantity to compare between the models.
Note that this cross-validation process avoids overfitting and allows di-
rect comparison between models that have different numbers of param-
eters, as in our case.

Imaging. Brain images were acquired using a Siemens 3.0 tesla Allegra
scanner. Gradient echo T2*-weighted echoplanar images (EPIs) with
blood oxygenation-level dependent (BOLD) contrast were acquired at an
oblique orientation of 30° to the anterior–posterior commissure line,
using a circular polarized head coil. Each volume comprised 41 axial
slices. Volumes were collected in an interleaved-ascending manner, with
the following imaging parameters: echo time, 30 ms; field of view, 191
mm; in-plane resolution and slice thickness, 3 mm; repetition time, 2.4 s.
EPI data were acquired during four runs of 75 trials each and variable
length. Whole-brain high-resolution T1-weighted structural scans (1 �

1 � 1 mm) were also acquired for all participants and were coregistered
with their mean EPI images. We note that with these imaging parameters,
due to sometimes partial coverage of the whole-brain volume as well as
significant dropout in the orbitofrontal cortex for some participants,
group-level analyses used a mask that did not include the most dorsal
part of the parietal lobe, and most areas in the orbitofrontal cortex
(BA11) and the ventral frontal pole.

Preprocessing and analysis of imaging data were performed using Sta-
tistical Parametric Mapping software (SPM8; Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London UK) as well as
custom code written in Matlab (MathWorks). Preprocessing of EPI im-
ages included high-pass filtering of the data with a 128 Hz filter, motion
correction (rigid-body realignment of functional volumes to the first
volume), coregistration to MNI atlas space to facilitate group analysis (by
computing an affine transformation of the structural images to the func-
tional images, and then to the MNI template, segmentation of the struc-
tural image for nonlinear spatial normalization, and finally nonlinear
warping (i.e., normalization) of both functional and structural images),
and spatial smoothing using a Gaussian kernel with a full-width at half-
maximum of 8 mm, to allow for statistical parametric mapping analysis.
Statistical analyses of functional time series followed both a model-based
and a model-agnostic approach. Structural images were averaged to-
gether to permit anatomical localization of functional activations at the
group level.

Model-based analysis. In the model-based analysis, we used the best-
fitting computational model to generate a set of neural hypotheses that
took the form of predictions for the specific time courses of internal
variables of interest. For this, we fit the model to each participant’s data
from the functional scans (300 trials per participant). We then used the
maximum a posteriori parameters to run the model and generate vari-
ables of interest: the weights of each of the features and the prediction
error at the time of the outcome for each trial. We analyzed the whole-
brain BOLD data using a general linear model (GLM) that included the
following two regressors of interest: (1) the prediction error, that is, the
difference between the obtained outcome and the (model-generated)
value of the chosen stimulus on each trial; and (2) the standard deviation
of the weights of the features of the chosen stimulus on each trial. The
prediction error parametric regressor modulated outcome onsets, while
the standard deviation parametric regressor modulated stimulus onsets.
In addition, the GLM included regressors of no interest, as follows: (1) a
stick regressor for the onsets of all stimuli; (2) a stick regressor and the
onsets of all outcomes; (3) a block regressor spanning the duration be-
tween stimulus onset and the time the response was registered, to control
for activity that correlates with longer reaction times; (4) a parametric
regressor at the time of stimulus onset corresponding to the reaction time
on that trial, to additionally account for activity that can be explained by
the difficulty or amount of deliberation on each trial (Grinband et al.,

Table 1. Free parameters for each of the models, and their best-fit values across the participant pool when fitting the first 500 fast-paced trials or the 300 slower-paced
trials from the functional scans

Model Parameter Mean (SD) first 500 trials Mean (SD) last 300 trials Range Prior

Naïve RL � (learning rate) 0.431 � 0.160 0.514 � 0.231 0 –1 None
� (softmax inverse temperature) 5.55 � 2.30 4.85 � 1.88 0 –� Gamma (2, 3)

Bayesian model � (softmax inverse temperature) 4.34 � 1.13 5.15 � 1.86 0 –� Gamma (2, 3)
fRL � (learning rate) 0.047 � 0.029 0.076 � 0.042 0 –1 None

� (softmax inverse temperature) 14.73 � 6.37 10.62 � 4.92 0 –� Gamma (2, 3)
fRL
decay � (learning rate) 0.122 � 0.033 0.151 � 0.039 0 –1 None

d (decay) 0.466 � 0.094 0.420 � 0.124 0 –1 None
� (softmax inverse temperature) 10.33 � 2.67 9.18 � 2.16 0 –� Gamma (2, 3)

Hybrid � (learning rate) 0.398 � 0.233 0.540 � 0.279 0 –1 None
	 (‘steepness’ of dimension weights) 0.340 � 1.21 0.122 � 0.129 0 –� None
� (softmax inverse temperature) 14.09 � 6.96 11.84 � 4.96 0 –� Gamma (2, 3)

SH � (choice randomness) 0.071 � 0.024 0.110 � 0.039 0 –1 None
 (sigmoid ‘threshold’) 	4.06 � 1.72 	4.68 � 1.91 	10 to 0 None
� (sigmoid slope) 0.873 � 0.412 0.732 � 0.385 0 –� Gamma (2, 3)

Parameters fit to both phases of the experiment were similar; however, the performance criterion on games in the last 300 trials likely influenced parameters such as the softmax inverse temperature, as the proportion of trials in which
participants could reliably exploit what they had learned was limited. Parameters were constrained to the ranges specified, and a Gamma distribution prior with shape 2 and scale 3 was used for the softmax inverse temperature in all models.
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2008); and (5) six covariate motion regressors. None of the parametric
regressors were orthogonalized to each other so that the variance that is
shared between two regressors would not be attributed to either of them.
Separate regressors were defined for each of the four runs. Each partici-
pant’s data were then regressed against the full GLM, and coefficient
estimates from each participant were used to compute random-effects
group statistics at the second level. One contrast was tested for each of the
regressors of interest to identify activity correlated with that regressor.

Neural model comparison. In a second, model-agnostic whole-brain
analysis, a GLM was created that included all of the regressors of no
interest cited above, and one regressor of interest: a parametric regressor
at the time of stimulus onset that increased linearly from 0 to 1 across the
trials of the game. This regressor was used to identify areas that are more
active in the beginning of the game compared with the end of the game
(i.e., areas that are inversely correlated to the regressor) as candidates for
areas that are involved in representation learning. We used a voxel-level
threshold of t � 4.78 ( p � 5 � 10 	5) combined with FWE cluster-level
correction of p � 0.01 to extract functional regions of interest (ROIs) for
neural model comparison: a region in the right intraparietal cortex com-
prising 128 voxels [peak voxel (MNI coordinates), [33, 	79, 40]; t(21) �
7.30]; a region in the left intraparietal cortex comprising 123 voxels (peak
voxel, [	24, 	64, 43]; t(21) � 6.15); a region in the precuneus compris-
ing 95 voxels (peak voxel, [	3, 	73, 46]; t(21) � 6.70); a region in the
right middle frontal gyrus (BA9) comprising 67 voxels (peak voxel, [39,
23, 28]; t(21) � 4.71); a region in the left middle frontal gyrus (BA9)
comprising 45 voxels (peak voxel, [	39, 2, 34]; t(21) � 4.58); and a large
region of activity (1191 voxels, spanning both hemispheres) in the occip-
ital lobe, including BA17–B19, the fusiform gyrus, cuneus, and lingual
gyrus, and extending bilaterally to the posterior lobe of the cerebellum
(peak voxel, [3, 	94, 7]; t(21) � 10.29).

For each ROI and each participant, we extracted the time courses of
BOLD activity from all voxels in the ROI and used singular value decom-
position to compute a single weighted average time course per partici-
pant per ROI. We then removed from these time courses all effects of no
interest by estimating and subtracting from the data, for each session
separately, a linear regression model that included two onset regressors
for stimulus and outcome onsets, a parametric regressor at stimulus
onset corresponding to the reaction time on that trial (for valid trials
only) and a block regressor on each valid trial that contained 1s through-
out the duration of the reaction time, six motion regressors (3D transla-
tion and rotation), two trend regressors (linear and quadratic), and a
baseline. All regressors, apart from the motion, trend, and baseline re-
gressors, were convolved with a standard hemodynamic response func-
tion (HRF) before being regressed against the time-course data.

We used the residual time courses to compare the five models that
made predictions for attention on each trial (i.e., all models except the
naïve RL model). For each model, we created a regressor for the degree of
representation learning/attentional control at each trial onset, as follows:
the standard deviation of weights of the chosen stimulus for the fRL and
fRL
decay models; the standard deviation of 
 for the hybrid model; the
standard deviation of the inferred probability that the participant is test-
ing each of the hypotheses on this trial for the SH model; and the standard
deviation of the probability that each of the features of the chosen stim-
ulus is the target feature for the Bayesian model. We then computed the
log likelihood of a linear model for the neural time course containing
this regressor convolved with a standard HRF. Since linear regression
provides the maximum likelihood solution to a linear model with
Gaussian-distributed noise, the maximum log likelihood of the model
can be assessed as follows:

LL�	Ndata � � ln��2��̂2	
0.5� , (15)

where Ndata is the total number of data points in the time-course vector,
and �̂ is the standard deviation of the residuals after subtracting the
best-fit linear model. Since all models had one parameter (the coefficient
of the single regressor), their likelihoods could be directly compared to
ask which model accounted best for the neural activation patterns. All

neural model comparison code was developed in-house in Matlab and is
available on-line at www.princeton.edu/~nivlab/code.

Results
Participants played short games of the dimensions task—a prob-
abilistic multidimensional bandit task where only one dimension
is relevant for determining reward at any point in time—with the
relevant dimension (and within it, the target feature, which led to
75% reward) changing after every game. Figure 1B depicts a se-
quence of choices in one game. In this example, the participant
learned within 10 trials that the reward-relevant dimension is
“color” and the target feature is “yellow.” One might also infer
that the participant initially thought that the target feature might
be “circle” on the “shape” dimension. It is less clear whether the
participant later entertained the hypothesis that plaid texture is
the target feature (and, in fact, whether the wavy texture was
chosen on the first four trials purposefully or by chance). The
overall learning curve across participants and games is shown in
Figure 1C. On average, participants learned the task; however,
their performance at the end of games was far from perfect
(�60% correct). Examination of the number of correct choices
on the last six trials of each game revealed that, indeed, partici-
pants learned only �40% of the games (Fig. 1D). Note that the
occurrence of “unlearned games” is beneficial, as in these games
we can analyze the learning process throughout the whole game
(performance after learning has been completed is less interesting
for our intentions).

The game segment depicted in Figure 1B illustrates both the
richness of the data from our task, in which a sequence of 10
choices may be interpreted as involving testing of (at least) three
hypotheses, as well as its paucity— on any given trial, we know
what stimulus the participant chose, but not why they chose it.
That is, we do not know what feature or combination of features
led the participant to choose this stimulus. This difficulty in in-
terpreting choices in our task, together with our interest in un-
derstanding the nature of the learning dynamics, motivated a
model-based analysis of the behavioral data.

Modeling the dynamics of learning
We fit to the behavioral choice data (available online at www.
princeton.edu/~nivlab/data) a series of computational models
ranging from suboptimal to statistically optimal solutions for the
task (Fig. 2A). These models embody different hypotheses re-
garding the effect of the outcome of one trial on subsequent
representations and, consequently, on choices. In essence, each
hypothesis (model) consists of a sequence of predictions for the
participant’s choice on the next trial, given the trials since the
beginning of the game. Specifying these hypotheses as computa-
tional models allowed us to test them rigorously and compare
them to each other in a statistically principled way.

We first tested two benchmark models: a naïve RL model that
does not take advantage of the structure of the task and of the
knowledge that only one dimension is relevant for determining
reward (this model serves as a baseline for learning performance
absent any representation learning); and a Bayesian model that
solves the task in a statistically optimal way. The naïve model
learned a separate value for each of the 27 possible stimuli. That
is, in the naïve model, receiving a point for choosing the green
square with plaid texture led to an increased probability of select-
ing green squares with plaid texture. However, the model could
not generalize from this experience to other green stimuli or to
other squares. We did not expect this model to perform well on
the task or to provide a good explanation for participants’ behav-
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ior—with only 20 trials per game on average, there was not even
sufficient time to sample each of the 27 stimuli. Nevertheless, this
model was better than chance at predicting participants’ choices
(mean likelihood per trial for left-out data, 0.401; t(21) � 10.65,
p � 10	9, Student’s t test comparison with the random baseline;
Fig. 2A, top).

In contrast to the naïve RL model, the Bayesian model exploits
all of the available knowledge about the structure of the task.
Nevertheless, this model also did rather poorly in explaining the
data, with an average likelihood per trial of 0.408 (Fig. 2A, bot-
tom). In fact, the Bayesian model was not significantly better than
the naïve RL model at predicting participants’ choices (t(21) �
0.75, p � 0.46; see also Fig. 2B, bottom two curves), despite
embodying the statistically optimal solution of the task. This is
perhaps not surprising, even in light of the recent burgeoning
literature on Bayesian inference in perception, given that a full
Bayesian solution to representation learning is computationally
not feasible in realistic multidimensional environments—Bayes-
ian inference was tractable in our task only due to the small num-
ber of stimuli and dimensions, and the fact that the reward
probabilities were known to be stable a priori. Hence, it is reason-
able that, in general, the brain does not solve multidimensional
RL tasks using Bayesian inference.

We then tested a series of models that embody different
approximate solutions to reducing the dimensionality of the
problem being learned. First, we tested the fRL model—a
straightforward extension to the naïve model that takes advan-
tage of the fact that, in our task, different features of a stimulus do
not interact to determine reward. This model learns values
(weights) for each feature rather than for combinations of fea-
tures, such that obtaining 1 point for selecting the green square
with plaid texture would cause the model to predict a higher
likelihood of choosing green stimuli, square stimuli, or plaid
stimuli in the future, with these effects being additive (i.e., the
model predicts an even higher likelihood of choosing a green
square if such a stimulus is available in the subsequent trial). The fRL
model predicted participants’ performance quite well (average like-
lihood per trial, 0.470; significantly better than either the Bayesian or
the naïve RL models: t(21) � 7.93, p � 10	7 and t(21) � 14.85, p �
10	11, respectively; Fig. 2A, second from top). This can be seen as
reflecting the fact that, following our instructions and the struc-
ture of the task, participants learned at the level of features and
not whole stimuli. It also suggests that, at the level of features,
participants’ learning process was more reminiscent of rein-
forcement learning than Bayesian learning (which also oper-
ated at the level of features). This notwithstanding, the fRL
model treats all dimensions of the task as equal, and weighs the
three features of a stimulus equally both in choice (i.e., in
determining the value of a stimulus) and in learning (the pre-
diction error is divided equally among the features), and thus
the model does not fully take advantage of the known struc-
ture of the task.

In an attempt to improve upon the fRL model and allow it to
differentially (and sensibly) weigh the contributions of features
on different dimensions, we next tested a hybrid Bayesian-RL
model. This model learns relevance weights for each dimension
using Bayesian inference, and uses these to weight learning and
choice in an fRL model. We parameterized this model such that
Bayesian dimension weights could be used as is, accentuated (in
the extreme, only the maximum a posteriori dimension would be
taken into account) or relaxed toward equal weights. In this for-
mulation, the fRL model is nested within the hybrid model (set-
ting 	 � 0 in the hybrid model recovers the fRL model; see

Materials and Methods). Interestingly, despite the addition of
optimal inference at the level of dimension relevance, this model
did not do better than the simple fRL model in predicting partic-
ipants’ performance (average likelihood per trial, 0.471; t(21) �
0.39, p � 0.7, when compared to the fRL model; Fig. 2A). Indeed,
the best-fitting value of the parameter 	 was, on average, close to
0 (see Table 1), the value at which the two models are identical
(note that the curve for the hybrid model in Figure 2B lies behind
that for the fRL model).

Another method of feature-level learning is the SH model
developed by Wilson and Niv (2011). According to this model,
participants test a single feature at each point in time (see Mate-
rials and Methods), serially searching for the target feature. This
model is similar to the hybrid model in that it weighs dimensions
differentially during both learning and choice. It is more extreme
than the hybrid model as it concentrates on only one dimension
(and, in fact, on one feature) at each point in time, but it is also
less optimal than the hybrid model in that the feature being tested
is chosen randomly (see Materials and Methods). Nevertheless,
this model predicted participants’ data slightly better than the
fRL and hybrid models (average likelihood per trial, 0.493; signif-
icantly better than the fRL and hybrid models, t(21) � 3.86, p �
0.001 and t(21) � 3.47, p � 0.005, respectively; Fig. 2A, second
from bottom). Notably, this model does not use reinforcement
learning at all.

The similar performances of the fRL, hybrid, and SH models,
despite their rather radically different algorithms (equal weight-
ing of dimensions vs learning about only a single feature; rein-
forcement learning vs likelihood ratio tests) suggested that the
different models may be capturing nonoverlapping aspects of
participants’ choice and learning processes. Moreover, the poor
performance of the Bayesian model, and the fact that uniform
weighting of dimensions was preferable to Bayesian dimension
weights in the hybrid model (Table 1), indicated that perhaps the
models were doing “too well” at the task—they were outperform-
ing the participants, and thus failing to predict participants’
choices.

One difference between our models and human participants is
that the models do not forget. Each of the models described
above, whether based on statistical inference or RL, used all trials
from the beginning of a game effectively. In particular, what the
model learned about, say, the triangle feature, remained faithfully
in memory even if the next few trials involved choices of stimuli
with a circle shape. But this might not be the case in the human
brain. To test whether forgetting of the learned values of features
of unchosen stimuli could improve the correspondence between
the choices of the model and human behavior, we developed the
fRL
decay model, which learns weights for features using RL
with uniform dimension weights (as in the fRL model) but decays
(“forgets”) the weights of unchosen features toward 0 [a similar
Bayesian plus decay model was developed (Wilson and Niv,
2011), in which the posterior distribution over which feature is
the target feature decays to a uniform baseline on every trial; this
model performed significantly but only slightly better than the
regular Bayesian model, and was still inferior to the other approx-
imate models].

As can be seen in Figure 2A, the fRL
decay model provided
the best fit for the data (average likelihood per trial, 0.528) and
was significantly better than the fRL model (t(21) � 15.33, p �
10 	12, paired t test) as well as all other models. These results
were similar when predicting the fast-paced trials or the slow-
paced trials. Furthermore, fitting initial values for all rein-
forcement learning models and the target for decay for the
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fRL
decay model did not significantly improve the fit of the
fRL
decay model and did not change its superiority com-
pared with other models.

Predicting participants’ choices with �50% accuracy in a task
with three options (chance, 33%) may seem a modest success;
however, at the beginning of games participants’ choices cannot
be predicted as all features have similar initial weights, and the
longer the game, the better the model can predict choice. Figure
2B indeed shows that the predictive accuracy of the fRL
decay
model increased, on average, to �80% throughout the game,
with both the fRL model and the Bayesian model significantly
lagging behind (fRL
decay predictions were significantly better
than those of the fRL model on all trials except the first and the
24th, and were significantly better than those of the Bayesian
model on all trials except for the first trial in a game; p � 0.05,
paired Student’s t tests for each trial separately).

Moreover, as a more stringent test of the models’ ability to predict
participants’ choices, we repeated this analysis considering only
games in which the participant did not learn the identity of the target
feature by the end of the game (i.e., games in which the participant
chose the stimulus containing the target feature fewer than five times
in the last six trials of the game). In these games, although partici-
pants were performing at chance (data not shown), the fRL
decay
model could still predict choices with �70% accuracy, on average,
by the end of the game (Fig. 2C), with the other models significantly
lagging behind. In particular, the Bayesian model could not predict
participants’ choices significantly better than chance in six of the last
seven trials (p � 0.05), further suggesting that this model could
account for participants’ behavior only to the extent that that behav-
ior accorded with the correct solution of the task.

Neural substrates for representation learning
We next looked for neural correlates of the learning process that
is realized by the fRL
decay model. To start from well trodden
ground, we first tested for correlates of prediction errors, that is,
for the difference between the outcome (0 or 1 point) and the
value of the chosen stimulus (as learned by the model) on every
trial. As expected (McClure et al., 2003; O’Doherty et al., 2003,
2004; Hare et al., 2008; Diuk et al., 2010; Niv et al., 2012), a
regressor for prediction errors correlated with BOLD signals in
the striatum, specifically bilateral ventral striatum (nucleus ac-
cumbens) and right dorsal putamen (Fig. 3).

Having confirmed that the values that our model learns gen-
erate prediction errors that are in line with the known locations of

BOLD prediction-error activity, we next sought to investigate the
correlates of representation learning, that is, the process by which
participants homed in on the reward-relevant dimension. Con-
trary to our a priori intuition, which suggested that participants
search for the relevant dimension and the target feature through
a process of elimination (as embodied in, for instance, the SH
model), model comparison had suggested that participants were
simultaneously learning about all dimensions of the chosen stim-
uli. Indeed, the fRL
decay model does not require any special-
ized representation learning mechanism, and could conceivably
be implemented solely within the RL mechanisms of the basal
ganglia: dopaminergic prediction errors there could modulate
the strengthening or weakening of corticostriatal synapses repre-
senting the features of the currently chosen stimulus (Wickens
and Kötter, 1995; Reynolds et al., 2001; Wickens et al., 2003), with
synapses corresponding to features of unchosen stimuli decaying
uniformly as in a passive process of forgetting. Nevertheless, we
asked whether we could find correlates of the representation
learning process outside the basal ganglia.

To search for correlates of representation learning per se, we
sought to quantify for each trial the degree to which the partici-
pant is engaged in representation learning. For instance, at the
beginning of a game an area involved in representation learning
would be required, whereas at other times in the game represen-
tation learning may have already terminated and the participant
is simply selecting what she believes to be the target feature. Such
a measure can be derived from the distribution of the nine feature
weights (Fig. 4A): when these are fairly uniform (Fig. 4A, trials 1,
2, and 8), the participant must actively engage in representation
learning, whereas when the participant homes in on certain fea-
tures and selects them repeatedly, the weights of these features
increase, thereby differentiating from the other weights that de-
cay to 0. Importantly, this differentiation of weights occurs when-
ever features are consistently chosen (as in a choice kernel; Lau
and Glimcher, 2005), and regardless of whether the consistently
chosen feature is the target feature or not (Fig. 4A, compare the
weights on trial 4, where the participant is choosing circles, to
those on trial 10, where the participant has homed in on plaid or
yellow—in both cases, two features have higher values than all
others). We thus used the differentiation of feature weights (e.g.,
quantified as the standard deviation of the weights of the features
of the chosen stimulus; see Materials and Methods) to search for
a neural representation learning mechanism that is most active
when all weights are similar, decreasing activity as participants
focus on a certain feature and cease to consider alternatives.

We found significant correlates in areas approximately corre-
sponding to what has been labeled “the frontoparietal attention
control network” (Culham and Kanwisher, 2001; Corbetta and
Shulman, 2002): bilateral intraparietal sulcus (IPS) and precu-
neus (Fig. 4B, top), and bilateral dorsolateral prefrontal cortex
(dlPFC; specifically, activations in middle and inferior frontal
gyrus on the left side and extending into the lateral orbitofrontal
cortex in the right side; Fig. 4B, bottom). Additionally, we found
strong activations in the occipital lobe including Brodmann areas
17, 18, and 19, the fusiform area, and extending to the posterior
lobes of the cerebellum (Table 2), areas that have also been iden-
tified as part of the covert attention network (Corbetta et al.,
1998; Corbetta and Shulman, 2002).

These results suggest that the frontoparietal attention control
network is active in dynamically directing attention to different
visual dimensions of the task stimuli during the representation
learning phase, that is, when different alternatives for the relevant
dimension are being entertained. In contrast, when the partici-

A B

Figure 3. Neural correlates of prediction errors from the fRL
decay model. Activations
were thresholded at a whole-brain FWE threshold of p � 0.05 (which corresponded to t � 6.4
and p � 1.5 � 10 	6 at the single-voxel level) and a minimum cluster size of 10 voxels. A,
Activations in bilateral ventral striatum (left: peak MNI coordinates, [	15, 5, 	11]; peak
intensity, t � 10.01; cluster size, 57 voxels; right: peak MNI coordinates [12, 8, 	8]; peak
intensity, t � 8.37; cluster size, 47 voxels). B, Activation in dorsal putamen (peak MNI coordi-
nates, [21, 	7, 10]; peak intensity, t � 8.55; cluster size, 45 voxels). No other areas survived
this threshold. Overlay: average structural scan of the 22 participants.
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pant concentrates on one feature (Zhou and Desimone, 2011;
Baldauf and Desimone, 2014), this system is less active. Impor-
tantly, our analysis accounted for variance related to stimulus and
outcome onsets, prediction error activity at the time of outcome,
and reaction times in regressors of no interest (see Materials and
Methods), suggesting that these activations cannot simply be at-
tributed to task difficulty, reward rate, or surprise.

Finally, we used neural model comparison to ask whether the
neural activations in the attentional control network can arbitrate
between competing models of the underlying representation
learning process (Mack et al., 2013). To do this, we first extracted
activations in the attentional-control network using a model-
agnostic method by searching for areas that were more active in
the beginning of games (when representation learning was heav-
ily called for) and had reduced activity as the game wore on. This
contrast identified six ROIs corresponding to the frontoparietal
attention control network (a single occipital region spanning
both hemispheres and extending to cerebellum, bilateral IPS,
precuneus, and bilateral dlPFC; see Materials and Methods). We
then extracted and averaged the signals in each of these areas to
create six time courses per participant, and modeled and sub-
tracted from these data all factors of no interest. The residual
signal was then modeled separately for each of the competing
models, as a linear function of the “attentional control” predicted
by the model (see Materials and Methods).

Results of the neural model comparison favored the
fRL
decay model (Fig. 4C) more than each of the other models,
apart from the Bayesian model, which provided a similarly good
fit to the neural data. That is, the likelihood of a model that
generates the BOLD signals in left IPS, right IPS, or precuneus
ROIs from the attentional control measure derived from the
fRL
decay process was significantly greater than the likelihood
of a model generating these BOLD signals from attentional con-
trol as derived from the fRL model (Fig. 4C). Similarly, model

Figure 4. Neural substrates of representation learning. A, Sequence of choices and associated feature weights from the fRL
decay model. Weights for each of the nine task features (left) are
depicted in the matrix under the chosen stimulus, with darker orange corresponding to a larger weight. Dots (filled for rewarded choices, empty for choices that led to 0 points) denote the three
features chosen on the current trial; weights reflect estimates based on previous trials, before learning from the current trial, that is, the weights are the basis for the current choice, as per the model.
B, Brain areas inversely correlated with the standard deviation of the weights of the chosen stimulus, at the time of stimulus onset. These areas are more active when weights are more uniform, as
in trials 1, 2, and 8 above. Positive activations, thresholded at a p � 0.0001 (t � 4.49) voxelwise threshold and then subjected to a whole-brain FWE cluster-level threshold of p � 0.05, were
significant in nine areas (Table 2). Shown here are bilateral IPS and precuneus (top), bilateral dlPFC (bottom), and bilateral occipital/cerebellar activations. Overlay: average structural scan of the 22
participants. Red dashed line, Slice coordinates. C, Neural model comparison. BOLD activity in six ROIs (identified using a model-agnostic GLM) supported the fRL
decay model when compared with
the fRL, hybrid, and SH models, and was agnostic regarding the comparison between the fRL
decay model and the Bayesian model (the naïve RL model was not tested as it did not predict
attentional control). Bars denote the log likelihood of each model minus that of the fRL
decay model, averaged across participants. Negative values represent higher log likelihood for the
fRL
decay model. Error bars denote SEM. **p � 0.01, *p � 0.05, one-tailed paired Student’s t test.

Table 2. Brain areas that were significantly correlated with an “attention”
regressor (BOLD activity anticorrelated with the standard deviation of feature
weights of the chosen stimulus), which passed a whole-brain cluster correction
threshold of p < 0.05 (voxel threshold: p < 0.001, t > 4.49)

Brain area
Cluster size
(voxels)

Peak MNI coordinates
(x, y, z)

Peak intensity
(t(21) value)

Left intraparietal cortex 300 (	27, 	64, 43) 7.77
Right cuneus/inferior occipital

gyrus/fusiform and
extending to cerebellum

399 (9, 	94, 4) 7.45

Left fusiform and extending to
cerebellum

534 (	36, 	64, 	50) 7.03

Right dorsolateral prefrontal
cortex extending into
lateral orbital cortex

270 (36, 26, 28) 6.75

Right temporal lobe 44 (57, 	46, 	14) 6.20
Right intraparietal cortex 200 (33, 	61, 46) 5.87
Right precuneus 35 (9, 	70, 52) 5.53
Left middle frontal gyrus 20 (	48, 32, 31) 5.15
Left inferior frontal gyrus 23 (	42, 5, 34) 5.14
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evidence for fRL
decay was significantly greater than that of the
hybrid and SH models in all six ROIs. Surprisingly, model evi-
dence for the Bayesian model was not significantly different from
that of the fRL
decay model in any of the ROIs (Fig. 4C). How-
ever, we note that the Bayesian plus decay model mentioned
briefly above, which provided a superior fit to the behavioral data
compared with the pure Bayesian model, showed a significantly
worse fit to the neural data as compared with the fRL
decay
model in both the right IPS and the precuneus. Moreover, when
testing the fit of the model predictions to neural data from un-
learned games only, the fRL
decay model fit all ROIs signifi-
cantly better than the Bayesian model (data not shown). This
suggests that the good fit of the Bayesian model to the neural data,
as seen in Figure 4C, might reflect a good fit to the learned phase
of games, where attention is more focused than the fRL
decay
model might allow, and is more in line with the Bayesian model.
In contrast, during the learning phase only, the fRL
decay
model accounts for the neural data better than does the Bayesian
model. These neural results, together with the behavioral support
for the fRL
decay model, suggest that the fRL
decay model
captures important aspects of the representation learning process
and its neural control.

Discussion
To study the interaction between representation learning and
reinforcement learning, we tested participants on the dimensions
task—a multidimensional three-armed bandit task with proba-
bilistic rewards. By comparing alternative computational models
for the learning process, we showed that, rather than using a
Bayes-optimal strategy to solve the task, participants combined
value learning at the level of features with a decay process that
served to highlight the value of consistently chosen features and
decay the value of other features to 0. This fRL
decay model
explained up to 70% of the choice variance even in unlearned
games—those games in which participants performed randomly
with respect to choosing the target feature—suggesting that the
model captured meaningful aspects of the underlying learning
and decision-making process. Neural analysis using a model-
derived trial-by-trial measure of the extent to which participants
were engaged in representation learning implicated the frontopa-
rietal attentional control network in representation learning.
This bilateral network, which includes the IPS, precuneus, and
dlPFC, was more active when participants were engaged in rep-
resentation learning and had not yet homed in on one feature that
they believed was the target feature. Extrapolating to tasks in the
real world, our results suggest that trial-and-error learning in
multidimensional environments is aided by neural attentional
control mechanisms that help to focus learning on a subset of
dimensions, thus mitigating the curse of dimensionality and en-
abling efficient learning.

Although no two experiences are exactly alike, to make adap-
tive decisions we must learn from past experience. As such, learn-
ing is predicated on generalization— deciding what details are
inconsequential and can be ignored so as to allow prediction in
one situation based on experience in another (Shepard, 1987;
Jones and Cañas, 2010). In RL, function approximation methods
allow for generalization by assuming smoothness over the values
of similar states (e.g., the learned value for a dark red stimulus
must be similar to that of a light red stimulus, a sensible approx-
imation given that the difference in color may arise from observ-
ing the same stimulus in different lighting conditions). However,
a problem still remains when attempting to generalize across di-
mensions, for instance, from red to triangle, where similarity

functions are not well defined. In fact, by definition generaliza-
tion occurs within, but not across “separable” (as opposed to
“integral”) perceptual dimensions such as color, shape, and tex-
ture (Nosofsky and Palmeri, 1996; Soto et al., 2014). Thus, to
overcome the curse of dimensionality one must reduce the num-
ber of relevant dimensions, effectively learning from experience a
minimal state representation for each task (Jones and Cañas,
2010). Here we have investigated this learning process computa-
tionally and neurally in a task that involves reducing the dimen-
sionality of the task from three dimensions to one.

Obviously, our task was highly simplified. Nevertheless, we
believe that only a few dimensions are relevant to most natural-
istic tasks. This is essentially an assumption about the complexity
of the causal structure of tasks that we are faced with in everyday
life (or at least tasks that we are good at solving). Our hypothesis
is that brain mechanisms have evolved to take advantage of such
regularities across tasks, in essence developing a prior on task
structure that makes selective attention beneficial. This prior was
built into the dimensions task explicitly through task instruc-
tions; however, work in multidimensional categorization tasks
suggests that, even in the absence of instructions, animals and
humans assume a simple structure in which category structure
depends on only one dimension, and test more complex hypoth-
eses only once they have exhausted all such simple hypotheses
(Shepard et al., 1961; Smith et al., 2004; Rehder and Hoffman,
2005b; Cohen and Schneidman, 2013).

Indeed, considerable behavioral work on categorization and
concept formation has explored how humans learn what dimen-
sions of a stimulus are relevant (for review, see Ashby and Mad-
dox, 2005), with selective attention implicated as a key factor in
multidimensional learning (Nosofsky, 1986; Kruschke, 1992,
2006; Nosofsky et al., 1994a; Rehder and Hoffman, 2005a). This
work has also demonstrated that the selective nature of attention
is adaptive, with selectivity developing only in tasks in which the
category structure depends on only a few of the stimulus dimen-
sions. Selective attention is thus an integral part of most categoriza-
tion theories: learned attention weights amplify or attenuate specific
stimulus dimensions to facilitate category discrimination.

Two general classes of models have been suggested for cate-
gory learning. On the one hand are rule-learning models that use
sequential hypothesis testing (Nosofsky et al., 1994b). These
models suggest that hypotheses regarding the rule for categoriza-
tion are tested from simple to complex, with attention focusing
first on one dimension at a time (Levine, 1959, 1969; Bower and
Trabasso, 1963; Trabasso and Bower, 1964), and widening only as
needed. On the other hand are selective attention models that use
either a fixed allocation of attention across dimensions (Nosof-
sky, 1986) or adjust this allocation dynamically (Kruschke, 1992).
The latter models suggest that attention is broad at first, and the
focus of attention gradually narrows. Empirical evidence sup-
ports both processes (Rehder and Hoffman, 2005a), as has been
captured by more recent models (Love et al., 2004).

The models we have tested here can be construed as adapta-
tions of models from the categorization literature to a probabi-
listic RL scenario. In particular, our data support the fRL
decay
model, which is, in a sense, a hybrid between serial hypothesis
testing and a parallel learning model that narrows the focus of
attention only gradually. Although this model does not explicitly
involve attention processes or hypothesis testing, it emulates
both: the decay of weights of unchosen features allows the model
to focus learning on the weight of one consistently chosen fea-
ture. At the same time, the decay implements a form of a “choice
kernel” that allows the model to better predict future choices
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based on the repetition of actions at the level of features (Lau and
Glimcher, 2005; Schönberg et al., 2007; Wilson and Niv, 2011;
Seymour et al., 2012; Akaishi et al., 2014). However, the superior
performance of the fRL
decay model cannot be wholly attrib-
uted to a choice kernel, as simply adding a feature-level choice
kernel to the fRL model (without weight decay) improved the fit
of the model compared with the fRL model (p � 10	7, paired t
test), but was still inferior to the fRL
decay model (p � 10	9,
paired t test; results not shown). Thus, we can conclude that
although the fRL
decay maintains an implicit choice kernel, that
is not the sole reason that it accounts for the behavioral data as
well as it does.

Because the fRL
decay model dynamically adjusts the
“width” of its choice kernel according to previous choices, it can
also be seen as adjusting the breadth of attention: if red triangles
are available on several trials, and are consistently chosen, the
model will learn equally about both features. That having been
said, the fRL
decay model learns equally about all features of a
chosen stimulus, and later “unlearns” the values of those features
that are not consistently chosen. One could imagine that selective
attention would act at the time of learning, thus obviating the
need for later forgetting. It would be interesting in future work to
devise a version of the task in which selective attention could be
measured explicitly (e.g., using eye gaze; Rehder and Hoffman,
2005a) and to test whether attentional weighting at learning can
replace the decay process.

Previous work in reinforcement learning addressing related
questions of learning a representation (Doya et al., 2002; Frank
and Badre, t2012) used a “mixture-of-experts” architecture to
infer what stimulus dimensions participants were attending to. In
that framework, each “expert” learns a behavioral policy based on
a subset of stimulus features, and the action recommendations of
all experts are combined using “attention weights” that corre-
spond to how much reward each expert has led to in the past. An
implementation of this framework for our task, with three ex-
perts each learning a choice policy for one dimension, is concep-
tually straightforward. In effect, our hybrid model can be seen as
an instance of such an architecture, with weights in each dimen-
sion determining the policy for one expert, and the Bayesian
dimension weights setting the responsibilities of each expert. This
specific model did not provide a good explanation of our data,
but other mixture-of-experts variants might perform better. In
any case, it is unlikely that the brain uses a full mixture-of-experts
architecture for representation learning as this would necessitate
experts for each combination of environmental dimensions
(Frank and Badre, 2012), bringing back the curse of dimension-
ality in complex environments.

In contrast to the algorithmic basis of representation learning,
the neural basis of this process has been explored less often—
what brain mechanisms are involved in deciding what aspects of
the environment should RL structures such as the striatum learn
values for? Our results point to both the IPS, an area in the dorsal
posterior parietal cortex implicated in endogenous attention pro-
cesses and in visual feature search among multidimensional stim-
uli (Culham and Kanwisher, 2001; Chica et al., 2011; Liu et al.,
2011; Wei et al., 2011) and the dlPFC, a frontal area associated
with attentional control, in particular in the interaction with pos-
terior parietal cortex, and in switching between different tasks
(Dove et al., 2000; Corbetta and Shulman, 2002). Much work
suggests that the dlPFC mediates shifts in attention between per-
ceptual features of complex stimuli according to task demands, as
is required, for instance, in the WCST and its animal analogs
(Owen et al., 1991; Dias et al., 1996a,b, 1997; Birrell and Brown,

2000; Dalley et al., 2004; Buchsbaum et al., 2005; Fletcher et al.,
2005; Floresco et al., 2008). Prefrontal dopamine has also been
implicated in the selective attention processes thought to under-
lie such “set formation” and “set shifting” (Miller and Wickens,
1991; Holland and Gallagher, 1999; Crofts et al., 2001; Chu-
dasama and Robbins, 2004). Our study was not specifically de-
signed to assess the contribution of reward prediction errors,
putatively conveyed by dopaminergic projections, to the function
of the dlPFC and IPS—this is another promising venue for future
work.

In sum, while reinforcement learning methods are notorious
for not scaling up to tasks of real-world complexity, our results
suggest that selective attention mechanisms that direct attention
to only a subset of environmental dimensions at each point in
time can help to mitigate the curse of dimensionality. This inter-
action between attention and learning can vastly increase the
efficiency of simple trial-and-error learning processes in the basal
ganglia, thus moving one step toward accounting for the amazing
adaptive capabilities of humans, even in the face of a dynamic,
multidimensional world.
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